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Path-integral Monte Carlo (PIMC) simulations have become an important tool for
the investigation of the statistical mechanics of quantum systems. I discuss some
of the history of applying the Monte Carlo method to non-relativistic quantum
systems in path-integral representation. The principle feasibility of the method
was well established by the early eighties, a number of algorithmic improvements
have been introduced in the last two decades.

1 Introduction

Feynman’s classic paper of 1948 presented a Space-Time Approach to Non-
Relativistic Quantum Mechanics [1], or, in Hagen Kleinert’s words [2], “an
all-time global approach to the calculation of quantum mechanical ampli-
tudes”. Within the philosophy of this approach, we must find, as Kleinert
often stressed, “all properties, including the Schrédinger wave functions, from
the globally determined time displacement amplitude”. The Feynman path,
governed by the classical Lagrangian of the quantum system, is the very ob-
ject we need to study if we want to establish a truly independent alternative
to Schrodinger’s equation. In avoiding the operator formalism, the sum over
paths provides an independent conceptual link between quantum and classical
mechanics.

Another attractive feature of the path-integral formulation of quantum
mechanics is that it allows to establish a bridge between quantum mechanics
and statistical mechanics. Technically, the oscillating exponential of the time-
displacement amplitude turns into a positive Boltzmann weight if the paths
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are expressed in imaginary time. The quantum mechanical propagator thus
turns into the quantum statistical density matrix. It is this very feature which
allows the application of methods of classical statistical mechanics, notably
the Monte Carlo method, to quantum systems.

The Monte Carlo method came into being roughly around the same time
as the Feynman path. Anecdotally, the idea of gaining insight into a com-
plex phenomenon by making various trials and studying the proportions of
the respective outcomes occurred to Stanislaw Ulam while playing solitaire
during an illness in 1946 [3]. The immediate application was, of course, the
problem of neutron diffusion studied in Los Alamos at that time. The name
of the procedure first appeared in print in a classic paper by Metropolis and
Ulam in 1949 [4], where the authors explicitly mentioned that the method
they presented as a statistical approach to the study of integro-differential
equations would sometimes be referred to as the Monte Carlo method. In
classical statistical mechanics it quickly became a standard calculation tool.

2 Where’s Monte Carlo?

The object of interest in Monte Carlo evaluations of Feynman’s path integral
is the quantum statistical partition function Z given, in operator language,
by the trace of the density operator exp(—,@’ﬁ[ ) of the canonical ensemble
(6 = 1/kpT) associated with a Hamilton operator describing N particles of
mass m; moving under the influence of a potential V'
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Expressed as a Feynman integral, the density matrix elements read

r(hB)=r’ . h3
wles(-0mI) = [ Drmewd -5 [L({EO.AO) g, @)
r(0)=r 0
where r = {1, ...,7ny} and L denotes the classical Lagrangian
N
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expressed in imaginary time 7.2 The particles are assumed to be distinguish-
able. To evaluate the trace, we only need to set r = r’ and integrate over r.
To take into account Bose or Fermi statistics for indistinguishable particles,
the partition function splits into a sum of the direct Boltzmann part and
parts with permuted endpoints.

The right hand side of Eq. (2) is a path integral for the 3N functions
r. The idea of a Monte Carlo evaluation of this quantity is to sample these
paths stochastically and to get (approximate) information about the quantum
statistics of the system by averaging over the finite set of paths generated in
the sampling process.

Monte Carlo data always come with error bars and, in general, the errors
associated with numerical Monte Carlo data stem from two distinct sources.
A systematic error of Monte Carlo evaluations of the path integral follows from
the need to identify the paths by a finite amount of computer information.
This can be done by discretizing the paths at some set of points in the interval
(0, hB). For a single particle moving in one dimension, the simplest discrete
time approximation for L time slices reads (e = h3/L)

. da:j 1 m (xj — $j71)2 ]
g g I | [ ] e 2[5 v 0

where A = (27he/m)/?, 29 = x and x, = 2. Alternatively, one may expand
the individual paths in terms of an orthogonal function basis, e.g. by the
Fourier decomposition

!/ _ e k
l‘(T)Zx‘F%"‘;akSin%a (5)
and express the density matrix as

(el exp(-Bl) = JimTexp { 5o a2}

2There have been attempts to apply the Monte Carlo method to path integrals also for
real time. However, due to the oscillating exponential one then has to deal with problems of
numerical cancellation, and it is much harder to obtain results of some numerical accuracy.
Therefore, I shall here restrict myself to Monte Carlo working in imaginary time.
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L a? 1 7
X / H day, exp{—gkl%} X exp —g/V(x(T))dT , (6)
k=1 3
where oy = [2123/m(7k)?]*/? and J is the Jacobian of the transformation

from the integral over all paths to the integral over all Fourier coefficients. A
systematic error then arises from the loss of information by the finite number
L of points x; on the discretized time axis or by the finite number L’ of Fourier
components ay, that are taken into account in the Monte Carlo sampling of
the paths.

The other error source of Monte Carlo data is the statistical error due to
the finite number N, of paths that form the sample used for evaluating the
statistical averages. To make matters worse, the probability of configurations
is, in general highly peaked, making an independent sampling of paths highly
inefficient in most cases. The remedy is to introduce some way of “importance
sampling” where configurations are generated according to their probability
given by the exponential in Eq. (2). Statistical averages may then be com-
puted as simple arithmetic means. A way to achieve this is by constructing
Markov chains where transition probabilities between configurations are con-
structed that allow to generate a new configuration from a given one such that
in the limit of infinitely many configurations the correct probability distribu-
tion of paths results. A very simple and universally applicable algorithm to
set up such a Markov chain is the Metropolis algorithm introduced in 1953 [5].
Here a new configuration is obtained by looking at some configuration with
only one variable changed and accepting or rejecting it for the sample on
the basis of a simple rule that only depends on the respective energies of
the two configurations. The advantages of importance sampling on the basis
of Markov chains are obtained on the cost that, in general, successive con-
figurations are not statistically independent but autocorrelated. The crucial
quantity is the integrated autocorrelation time 7% of a quantity of interest
O = (0) with O = (1/N,,,) Zf\;"{ O; and O; computed for each path i in the
sample. It enters the statistical error estimate Ao for expectation values of
O computed from a Monte Carlo sample of IV,,, autocorrelated configurations
as

el 0(291 int
AD = [ 7/278", (7)

where 03, is the variance of O;.
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With Monte Carlo generated samples of Feynman paths one can thus
“measure” thermodynamic properties of quantum systems like the inter-
nal energy and the specific heat, but also gain more detailed information
about correlation functions, probability distributions and the like. In the
low-temperature limit, # — oo, quantum mechanical ground-state properties
are recovered.

3 Blazing Trails

A pioneer in the application of the Monte Carlo method to physics problems,
notably by applying it to the Ising model, was Lloyd D. Fosdick. He ap-
pears to have also been one of the first to consider the stochastic sampling of
paths. In 1962, he considered the possibility of sampling paths [6] for what
he called the conditional Wiener integral, i.e. the Wiener integral for fixed
end points. As a toy example he investigated the expectation value of the

functional exp {— fol fol 7'z (T)z(7")drdr’ ] for a conditional Wiener process,

and, more generally, for the quantity exp [— foﬂ V($(T))d7’} , i.e. he considered
direct computation of the partition function for a quantum particle moving
in a potential V. He introduced a Fourier decomposition of the paths and
generated these by direct Monte Carlo sampling of the Fourier components as
Gaussian stochastic variables. He did some explicit sampling of his toy model
to demonstrate the feasibility of the method, but a theoretical consideration
of the one-dimensional harmonic oscillator was not considered worthwhile to
be put on the computer, even though Fosdick, at the time, was at the Uni-
versity of Illinois and had access to the university’s ILLIAC computer. His
examples were primarily used to investigate the principle feasibility and pos-
sible accuracy obtainable by the method. Instead, Fosdick studied a pair of
two identical particles and presented some numerical results for this prob-
lem. Continuation of the work on the two-particle problem together with a
graduate student led to the publication of a paper on the Slater sum, i.e. the
diagonal density matrix elements, for *He in 1966 7], and on three-particle ef-
fects in the pair distribution function for *He in 1968 [8]. In the same year [9],
Fosdick elaborated on the numerical method in a report on the Monte Carlo
method in quantum statistics in the STAM review. Instead of sampling the
Fourier components he now used the discrete time approximation of the paths.
Sampling of z; at the discrete points was done using a trick that later would
gain prominence in PIMC simulations in an algorithm called staging. The
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idea was to express the discretized kinetic term in the relative probability
density p(z|zi—1,zi41) = (1/2m€) exp [—(; — 2i-1)% /26 — (241 — 7)) 2€]
as 7(’1‘1 7.%1')2/20'2 + (.731',1 7.73i+1)2/46 with T; = (.Ti,1 +’El+1)/2 and to sam-
ple (x; — #;)/o as an independent Gaussian variable. The procedure could
be iterated recursively for all z; and thus allowed to obtain statistically in-
dependent paths which were used to “measure” the potential energy term
exp [— fO’B V(:U(T))dr].

In 1969, Lawande, Jensen, and Sahlin introduced Metropolis sampling of
paths in discrete time, broken line approximation [10]. They investigated the
ground-state wave functions of simple one-dimensional problems (harmonic
oscillator, square well, and Morse potential) and, theoretically, also addressed
the problem of extracting information about excited energies and of simulat-
ing many particle problems. In a follow-up paper [11] they presented studies
of the Coulomb problem using Monte Carlo simulations of the path integral
in polar coordinates. Not surprisingly, the singularity at the origin had to
be avoided by artificial constraints and the authors admitted that a more
rigorous justification of their procedure was called for. The path integral was
later solved exactly by Duru and Kleinert in 1979 [12]. It became clear that
there were fundamental problems with such singularities in time-sliced path
integrals [2].

Little activity is recorded in the seventies, and I am only aware of a
brief theoretical consideration of the possibility of Monte Carlo sampling of
paths in a paper by Morita on the solution of the Bloch equation for many
particle systems in terms of path integrals from 1973 [13]. The paper is
cited in a later one by J.A. Barker published in 1979 [14] in which the one-
dimensional particle in a box is considered, and numerical estimations of the
ground-state energy and wave function are presented. The data were obtained
by introducing image sources to take account of the boundary conditions of
the box and using Metropolis sampling of the broken line approximation
of the paths. Incidentally, the analytic solution of this problem, i.e. of the
path integral for the particle in the box was given by Janke and Kleinert
almost simultaneously [15]. Barker also computed distribution functions for
the problem of two particles in a box.

Very much in the spirit of Lawande et al., but possibly unaware of this
work, Creutz and Freedman published a didactic paper on a statistical ap-
proach to quantum mechanics in 1981 [16). They, too, performed Metropolis
sampling of paths in the broken line approximation and studied the energies
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and ground-state wave functions of the one-dimensional harmonic oscillator.
The background of these authors were Monte Carlo studies of gauge field theo-
ries, and the paper was meant as an attempt to better understand the Monte
Carlo method by applying it to simple one-degree-of-freedom Schrodinger
problems. It still is a useful introduction to the basics of the technique, and
in particular, it presents a brief primer on the theory of Markov chains un-
derlying the Metropolis algorithm. To compute energies, they introduced
an alternative estimator by invoking the virial theorem. They also studied
double-well problems, presenting snap shot pictures of double-kink instanton
paths. The problem of determining the energy level splitting was addressed
by computing correlation functions.

The papers by Lawande et al. and by Creutz and Freedman appear to
have been cited very rarely, possibly because they presented their work as
being only of pedagogic value and not so much because the Monte Carlo
method could be a useful method to obtain numerical results for Schrédinger
problems which, in real life, should be handled by numerical methods more
suitable in this simple case. These remarks also hold for work published a
little later by Shuryak [17,18].

Fosdick’s work from 1962 was done very much at the forefront of the
technological possibilities of high-speed computing at the time. By the mid-
eighties, path-integral simulations of simple quantum mechanical problems
had become both conceptually and technically “easy”. Indeed, the exposition
by Creutz and Freedman was already written in an introductory, didactic
manner, and in 1985 the simulation of the one-particle harmonic oscillator
was explicitly proposed as an undergraduate project, to be handled on a
Commodore CBM3032 microcomputer, in a paper published in the American
Journal of Physics [19].

4 Speeding Up

The feasibility of evaluating the quantum statistical partition function of
many-particle systems by Monte Carlo sampling of paths was well established
in the early eighties and the method began to be applied to concrete problems,
in particular in the chemical physics literature. It had also become clear
that the method had severe restrictions if numerical accuracy was called for.
In addition to the statistical error inherent to the Monte Carlo method, a
systematic error was unavoidably introduced by the necessary discretization
of the paths. Attempts to improve the accuracy by algorithmic improvements
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to reduce both the systematic and the statistical errors were reported in
subsequent years. The literature is abundant and rather than trying to review
the field I shall only indicate some pertinent paths of development.

In Fourier PIMC methods, introduced in 1983 in the chemical physics
context by Doll and Freeman [20,21], the systematic error arises from the
fact that only a finite number of Fourier components are taken into account.
Here the systematic error could be reduced by the method of partial averag-
ing [22,23].

In discrete time approximations arising from the short-time propagator or,
equivalently, the high-temperature Green’s function, various attempts have
been made to find more rapidly converging formulations. Among these are
attempts to include higher terms in an expansion of the Wigner-Kirkwood
type, i.e. an expansion in terms of #%/2m. Taking into account the first term
of such an expansion would imply to replace the potential term eV (z;_1) in
(4) by [24-26]

’

[ awvw. ®)

GV(ﬁjfl) — -
This improves the convergence of the density matrix (4) (from even less than
O(1/L)) [24] to O(1/L?). For the full partition function, the convergence
of the simple discretization scheme is already of order O(1/L?): due to the
cyclic property of the trace, the discretization eV (z;_1) is then equivalent to a
symmetrized potential term e(V(z;_1)+V(z;))/2. The convergence behavior
of these formulations follows from the Trotter decomposition formula,

L L
e (A+B) = [67%67%] +0O(1/L) = [67%67%67%} +0(1/L%), (9)

valid for non-commuting operators A and B in a Banach space [27], identify-
ing A with the kinetic energy 55" 5}2 /2m; and B with the potential energy
BV ({Z;}). More rapidly converging discretization schemes were investigated
on the basis of higher-order decompositions. Unfortunately, a direct “fractal”
decomposition [28] of the form

L
_ . A g B o A g B
e (A+B):gﬂo[ealLeﬁlLeQQLeBQL"'j| , Zaz:ZBlZI (10)
inevitably leads to negative coefficients for higher decompositions [29] and
is therefore not amenable to Monte Carlo sampling of paths [30]. Higher-
order Trotter decomposition schemes involving commutators have proven to
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be more successful [31-34]. In particular, a decomposition of the form

[B,A],B] B A

L
Z:Llim Tr [eiﬁef%ef 2413 eiﬁefﬁ} , (11)

— 00
derivable by making use of the cyclic property of the trace, is convergent of

order O(1/L*) and amounts to simply replacing the potential €V in (4) by
an effective potential [32]

(8h)?
24mL?

Vet =V + (V)2 (12)
Another problem for the numerical accuracy of PIMC simulations arises from
the analog of the “critical slowing down” problem which is well known for
local update algorithms at second-order phase transitions in the simulation
of spin systems and lattice field theory. Since the correlations (z;z;j4) be-
tween variables x; and x4y in the discrete time approximation only depend
on the temperature and on the gaps between the energy levels and not, or
at least not appreciably, on the discretization parameter e, the correlation
length ¢ along the discretized time axis always diverges linearly with L when
measured in units of the lattice spacing e. Hence in the continuum limit of
e — 0 with g fixed or, equivalently, of L — oo for local, importance sam-
pling update algorithms, like the standard Metropolis algorithm, a slowing
down occurs because paths generated in the Monte Carlo process become
highly correlated. Since autocorrelation times diverge in simulations using
the Metropolis algorithm as [35] 73 o< L* with z ~ 2, the computational ef-
fort (CPU time) to achieve comparable numerical accuracy in the continuum
limit L — oo diverges as L x L* = L**1,

To overcome this drawback, ad hoc algorithmic modifications like intro-
ducing collective moves of the path as a whole between local Metropolis up-
dates were introduced then and again. One of the earliest more systematic
and successful attempts to reduce autocorrelations between successive path
configurations was introduced in 1984 by Pollock and Ceperly [36]. Rewriting
the discretized path integral, their method essentially amounts to a recursive
transformation of the variables z; in such a way that the kinetic part of the
energy can be taken care of by sampling direct Gaussian random variables and
a Metropolis choice is made for the potential part. The recursive transforma-
tion can be done between some fixed points of the discretized paths, and the
method has been applied in such a way that successively finer discretizations
of the path were introduced between neighbouring points. Invoking the poly-
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mer analog of the discretized path this method was christened the “staging”
algorithm by Sprik, Klein, and Chandler in 1985 [37].

The staging algorithm decorrelates successive paths very effectively be-
cause the whole staging section of the path is essentially sampled indepen-
dently. In 1993, another explicitly non-local update was applied to PIMC
simulations [35,38] by transferring the so-called multigrid method known from
the simulation of spin systems. Originating in the theory of numerical solu-
tions of partial differential equations, the idea of the multigrid method is to
introduce a hierarchy of successively coarser grids in order to take into ac-
count long wavelength fluctuations more effectively. Moving variables of the
coarser grids then amounts to a collective move of neighbouring variables of
the finer grids, and the formulation allows to give a recursive description of
how to cycle most effectively through the various levels of the multigrid. Par-
ticularly successful is the so-called W-cycle. Both the staging algorithm and
the multigrid W-cycle have been shown to beat the slowing down problem in
the continuum limit completely by reducing the exponent z to z ~ 0 [39].

Another cause of severe correlations between paths arises if the probabil-
ity density of configurations is sharply peaked with high maxima separated
by regions of very low probability density. In the statistical mechanics of spin
systems this is the case at a first-order phase transition. In PIMC simula-
tions the problem arises for tunneling situations like, e.g. for a double-well
potential with a high potential barrier between the two wells. In these cases,
an unbiased probing of the configuration space becomes difficult because the
system tends to get stuck around one of the probability maxima. A remedy
to this problem is to simulate an auxiliary distribution that is flat between
the maxima and to recover the correct Boltzmann distribution by an appro-
priate reweighting of the sample. The procedure is known under the name of
umbrella sampling or multicanonical sampling. It was shown to reduce au-
tocorrelations for PIMC simulations of a single particle in a one-dimensional
double well, and it can also be combined with multigrid acceleration [40)].

The statistical error associated with a Monte Carlo estimate of an observ-
able O cannot only be minimized by reducing autocorrelation times 3. If
the observable can be measured with two different estimators U; that yield
the same mean Ui(L) = (U;) with O = limp UZ-(L), the estimator with the
smaller variance 012]1_ is to be preferred. Straightforward differentiation of the
discretized path integral (4) leads to an estimator of the energy that explicitly
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measures the kinetic and potential parts of the energy by

L m = Ti— Tj S| =
U, = — — = B S - V). 13
= 2Lj_1< : )+L; (@) (13)

The variance of this so-called “kinetic” energy estimator diverges with L.
Another estimator can be derived by invoking the path-integral analog of the

virial theorem
L m Tj— T > 1 ,
= _ bt kS — 2y ) 14

and the variance of the “virial” estimator
1 & 1 &
U, = 2T ;:1 ;) V'(z;) + I ;:1 V(zi) (15)

does not depend on L. In the early eighties, investigations of the “kinetic”
and the “virial” estimators focussed on their variances [32,41,42]. Some years
later, it was pointed out [43] that a correct assessment of the accuracy also has
to take into account the autocorrelations, and it was demonstrated that, for a
standard Metropolis simulation of the harmonic oscillator, the allegedly less
successful “kinetic” estimator gave smaller errors than the “virial” estimator.
In 1989 it was shown [44] that conclusions about the accuracy also depend
on the particular Monte Carlo update algorithm at hand, since modifications
of the update scheme such as inclusion of collective moves of the whole path
affect the autocorrelations of the two estimators in a different way. A care-
ful comparison of the two estimators which disentangles the various factors
involved was given only quite recently [45]. Here it was also shown that a
further reduction of the error may be achieved by a proper combination of
both estimators without extra cost.

5 Concluding Remarks

The application of the Monte Carlo method to quantum systems is not re-
stricted to direct sampling of Feynman paths, but this method has attractive
features. It is not only conceptually suggestive but also allows for algorithmic
improvements that help to make the method useful even when the problems
at hand require considerable numerical accuracy. However, algorithmic im-
provements like the ones alluded to above have been proposed and tested
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mainly for simple one-particle systems. On the other hand, the power of the
Monte Carlo method is, of course, most welcome in those cases where ana-
lytical methods fail. For more complicated systems, however, evaluating the
algorithms and controlling the numerical accuracy is also more difficult. Only
recently, a comparison of the efficiency of Fourier- and discrete time-path in-
tegral Monte Carlo for a cluster of 22 hydrogen molecules was presented [46]
and debated [47,48]. Nevertheless, path-integral Monte Carlo simulations
have become an essential tool for the treatment of strongly interacting quan-
tum systems, like, e.g. the theory of condensed helium [49)].
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