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It is shown that the critical (or deconfinement) temperature for the Nambu-Goto
string connecting the point-like masses (quarks) does not depend on the value of

these masses and it is the same as that in the case of the string with fixed ends
(infinitely heavy immobile quarks).

1 Introduction

We were lucky having collaborated with Professor Hagen Kleinert during our
studies in string models. Prominent scientific achievements reached by him
are well known but their presentation calls for a separate article. Here we
would like to note briefly our impression from the personal contacts with him.
The high incontestable authority of Professor Kleinert is harmoniously sup-
plemented with his personal fascination. He literally “charges” colleagues by
his creative energy. He is always full of ideas and new approaches to the prob-
lems under consideration and he readily shares those with his collaborators.
To any question addressed to Professor H. Kleinert, one receives a clear-cut
answer that testifies a profound understanding of the problem at hand. Klein-
ert’s merry and slightly ironical temper renders the personal contacts with
him easy and nice without any hint of pressure of his authority.
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We have decided to present in this book the results of a direct continuation
of our joint work with Professor H. Kleinert devoted to string dynamics [1]. In
Refs. [2-4], the dependence of the interquark potential on the quark masses has
been investigated in the model of the relativistic string with ends loaded by
point-like masses. It was shown that allowing for finite values of quark masses
leads to considerable corrections to the string potential in comparison with
calculations when the string ends are fixed (immobile quarks with infinitely
heavy masses). The critical radius® in the string potential turns out to depend
on the quark masses especially in the case of the asymmetric configurations
when the string ties together light and heavy quarks [1].

Along with the critical radius of the interquark potential, an important
parameter of the string model of hadrons is the temperature of deconfinement
or critical temperature [6]. This prediction of the string model is directly
compared with the lattice simulations in the framework of gauge theories [7].
In this connection the investigation of the quark mass contribution to the
critical string temperature is of certain interest. It is this problem that will
be treated in this paper.

Usually one believes that in string models the critical radius R. of the
potential and the critical temperature T, are related. For example, in the
Nambu-Goto string with fixed ends the relation 2 R. 7. = 1 holds. As the
critical radius R, depends on the quark masses [2], one could expect that
this will also be valid for the critical temperature 7T,.. However, this is not
the case [8]. The deconfinement temperature in the Nambu-Goto string with
point-like masses (quarks) at its ends turns out to be independent of the
quark masses, this temperature being the same as that in the string with
fixed ends.

The layout of the paper is the following. In Section 2, we will recall the
definition of the critical temperature in string models. A new approach to
calculate the Casimir energy at finite temperature in the Nambu-Goto string
of finite length is then suggested in Section 3. The temperature dependence
of this energy determines the deconfinement or critical temperature in the
string model under consideration. We show in Section 4 that the critical
temperature in theNambu-Goto string model with fixed ends and with point-
like masses attached to the string ends is the same. Finally, in the conclusions,

aAs is known [5], the potential generated by the string is not determined for any distances
between quarks no sooner than at R > R., where R, is the critical radius in the Nambu-
Goto string with fixed ends which is determined by the string tension Mg: R2=m(D —
2)/(12 M3).
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the obtained results are briefly discussed.

2 Critical Temperature in String Models

The critical temperature (or the temperature of deconfinement) in string mod-
els is defined in the following way. Let V (R, T') be the free energy of the string
(or string potential) calculated at finite temperature T. The asymptotics of
this energy at large distances is

V(R,T) —o(T)R, R — oo, (1)

where o(T) is an effective string tension depending on the temperature T'. At
the critical value of T' (T' = T,), the string tension vanishes

o(T,) = Jim R YW(R,T.) =0. (2)
The string potential at finite temperature is directly calculated in the same

way as at T = 0 [2]. As a result, one obtains the well known square-root
expression

2(D — 2)

W EC(Ra T, m) ) (3)

V(R,T,m) = M@R\/l +
where Mg is the string tension at zero temperature, i.e. o(T = 0) = M3; m
is the quark mass, Ec(R, T, m) is the renormalized Casimir free energy for
one transverse degree of freedom in the string model, and D is the dimension
of the space-time. Usually one puts D = 4. Hence, determining the critical
temperature requires the calculation of the Casimir free energy at finite tem-
perature in the string model under investigation. For simplicity, we shall call
the Casimir free energy briefly Casimir energy.

3 Casimir Energy at Finite Temperature

The Casimir energy in the Nambu-Goto string at finite temperature is given
by [2]

T+oo oo

Ec(R.T) =5 > In(Q) +wp), (4)

n=—oo k=1

where (2,, are the Matsubara frequencies ,, = 2anT, n =0,%1,.... Here T
is the temperature, and wy are the eigenfrequencies of the string determined
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by the boundary conditions for the string coordinates that, for fixed string
ends (immobile quarks), assume the values

k=1,2,.... (5)

In the case of the string with masses at its ends, the frequencies wy are the
positive roots of the following equation [2]

2wm

tan(w R) = m .

(6)
For simplicity the symmetric quark configuration is considered, i.e. m; =
me = m. Since the critical temperature is determined by the value of
Ec(R,T) in the limit R — oo (see Egs. (2) and (3)), it is convenient, in

the case of string frequencies (5), to take this limit directly in Eq. (4) substi-
tuting the summation over k by integration

+oo

—+o00 2
T k RT?
EEYR—o00.T) =7 3 / diln [Q2 + (%) = I —.

Here the divergent integral and the divergent sum over n are calculated by us-
ing the analytical regularization and the Riemann zeta function, respectively.
Substituting (7) in (3) we find the critical temperature in the Nambu-Goto
string with fixed ends

T. 3
My 7(D—2)" ()

However this method cannot be applied to string frequencies determined by
Eq. (6). Investigating the double sum [9] in (5) without introducing the
integration over dk is again based on the fact that frequencies wy are multiples
of 7/R.

Here we use a new method [10] for calculating the Casimir energy at finite
temperature that works equally well both with frequencies (5) and with string
frequencies determined by Eq. (6). The idea of the method is the following.
At first we represent the renormalized Casimir energy at zero temperature in
terms of the integral over string eigenfrequencies. In other words, we obtain
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the spectral representation
(oo}

Eo(R,T = 0) = / dw Ec(Ryw). ()

0

Then we pass in a standard way [11,12] from integration to summation over
the Matsubara frequencies ,, = 2anT, n = 0,+1,+2,... . Practically this
can be done by the following substitution in Eq. (9)

dw — 27T dw Zl S(w—), (10)
n=0
with the result
Ec(R,T) = 27T €c(R, Q). (11)
n=0

The prime in the summation symbol means that the term with n = 0 should
be taken with a multiplier 1/2.

It is worth noting here that the formal substitution (10) can lead to the free
energy or to the internal energy of the quantum system under consideration.
Therefore one has to be careful when applying this procedure [10].

The integral representation for the Casimir energy in the Nambu-Goto
string with fixed ends is given by [2]

1 7 R T w dw

Eﬁxedz—/d In(1- 2 ——/ 12

© 27 n (1 —exp (-20R)) 7w ) exp(2wR)—1" (12)
0 0

The last expression in this formula is obtained by integration by parts. Omit-
ting the minus sign in (12), we see that the spectral density of energy in this
formula is of Planckian form for the one-dimensional black body, the effec-
tive temperature of the string vacuum being equal to (2R)~!. Applying the
algorithm explained above, we find

n
nRT)—1"

oo

/
Efd(R T) = —47T?R 13
BURT) = e TR (13)

n=0

Integration by parts in (12) was required for obtaining the term with n = 0 in
the sum (13) without divergencies. In order to overcome the stated difficulty
in analogous calculations in statistical physics [11,12], the Casimir force is
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calculated at first and then the corresponding potential is recovered on this
basis.

The sum in (13) can be evaluated in the two limiting cases of large and
small temperatures. At large T', the main contribution in (13) is due to the
term with n = 0:

T
Efixd(R T — o0) = 5 (14)

Using the Kuler-Maclaurin formula for small T,

[ee] Jo%s) 1
S Fn) :/ F(z)de — —F'(0) + ...,
p— 0 12
Eq. (13) reduces to the form
fixed T TR1™?
(R, T) =~ T (15)

Hence, unlike Eq. (7), we also preserve here the T-independent term —m/24 R
which vanishes when R — oco. Proceeding from the physical consideration,
it is clear that the string picture of quark confinement inside hadrons is ap-
plicable only at low temperatures. In string models the temperature scale
is determined by the string tension M, ~ 0.4 GeV. Hence when finding the
critical temperature in string models, the region of small temperatures should
be considered [6]. After allowing all this, we have to substitute in (1)-(3) the
expression for the Casimir energy at small T (Eq. (15)). After taking the
limit R — oo in (2), the contribution of the first term in (15) to the effective
string tension vanishes and we obtain the critical temperature (8).

Equation (15) allows one to introduce a critical temperature for the string
of a finite length T.(R). To this end, limp_~ should be removed from def-
inition (2). At this temperature, the effective tension of the string of finite
length R vanishes. It is obvious that the string critical temperature defined in
this way will be dependent on the string length R. By making use of Egs. (2),
(3), and (15), we obtain

=2 2
Te (p) =Tc — 4_p2a (16)

where the following dimensionless variables are introduced

Te :TC/MO, p:MgR. (17)
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When p — oo, the critical temperature 7.(p), dependent on the string length
p, tends to its limiting value 7. from below, because the existence of longer
strings requires a greater work for their splitting (phase transition) than it
takes place in the case of short strings.

In another approach, the critical temperature for the Nambu-Goto string
of finite length has been considered in Ref. [13]. The results obtained there
probably imply that 7.(p) tends to 7. from above in the limit p — oo.

4 Critical Temperature for the Nambu-Goto String with Massive
Ends

The method for calculating the Casimir energy at finite temperature pre-
sented in the preceding section can be directly applied to the Nambu-Goto
string with massive ends. The integral representation of the Casimir energy
at zero temperature in this string model is [2]

o0

1 wm — M2\ ?
Ec(R, T =0,m) = %/dwln [IG_QWR (WM%) ] ) (18)
0
0

where m is the quark mass. We consider, for simplicity, the quarks with
equal masses (the Casimir energy and the string potential for different quark
masses m; # my have been investigated in Ref. [1]). Integrating by parts in
(18), one obtains

R T wdw 2mM3
EC(R,T—O,m)——;/g(w)_l (1— R(w2m2—M04)> . (19)

where we have

or (wm+ M2\?
glw) = ¢* R(FM%) - (20)

Notice that now the spectral density of energy in (19) is not Planckian. Then,
the Casimir energy at finite temperature is

ool 4’/TT2Rn 2m]W2
EARTm) — N~ AT ’n ([ . 21
el 1) nz::o g(2mnT) — 1 ( R(AT2n2T2m?2 — Ma*)) e

where g(z) is defined in (20). When m — oo or m — 0, Eq. (21) reduces
o (13). It is important to note that the Casimir energies at finite temper-
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ature given by the sums (13) and (21) are free of any divergencies. It is a
direct consequence of using the integral representations (12) and (18) for the
renormalized Casimir energies at zero temperature.

In the limit T — oo, the Casimir energy (21) tends to the value

T 2
Ec(R.T — oo,m) = (1 + M—TR) . (22)
2R

At low temperature the estimation of the sum in (21) can be done by making
again use of the Euler-MacLaurin formula, where the quantity F”(0) should
be calculated. Here, the function F'(z) is given by

Fz) = ol — ne)” (1 - ]%(27’7> L (23

e (1 +nz)? — (1 —nx)? na? — 1)

where 7 is the ratio m/M2. Expanding F(z) in a Taylor series gives

[1—(R+2n)z+ O(2?)] 2n 5 o 1
F o~ 1+ —(1 O . 24
® SCEsT )+ 06| (@)
Then, it follows that
iy L 2n 1
F'(0) = 2<1+—R>—> 5 when R — 0. (25)

In the limit R — oo the integral term in the Euler-McLaurin formula vanishes.
Hence, the critical temperature in the model under investigation turns out to
be the same as that in the Nambu-Goto string with fixed ends

e = (130)2:%' (26)

If we consider again the critical temperature dependent on the string length
(see the end of the preceding section), then this quantity proves to be depen-
dent on the quark mass. Indeed, now we have, instead of (16)

7 (pop) = (1 + 27“)_1 <T§ — 14(—;]2)> : (27)

where p = m/My, p = MyR, ¢ = MZR/m = p/u, and where the function
I(q), generated by the integral term in the Euler-Mclaurin formula, is given
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by
2 | - 2_2_2
::——-/[dz (= q) Sl N (28)
72 62ZZ+(] —(z=¢q)? z+g¢
0

When m — oo, the function I(g) tends to 1. In order to obtain Eq. (16) from
(27) in this limit, one has to send p to oo in the first multiplier in (27).

5 Conclusions

The method for calculating the Casimir energy at finite temperature proposed
here enables us to find the critical temperature in the Nambu-Goto string with
massive ends. Before it was not obvious that this temperature is the same
as that in the string model with fixed string ends. Probably this is due to
the fact that in string models, like in statistical models, the boundary effects
appear to be unessential for implementing phase transitions.

Our consideration is restricted to the one-string approximation. Certainly,
it is important to calculate the critical temperature for a gas of interacting
strings with massive ends and to take in this way into account the processes
of splitting and joining such strings which are followed by creation and anni-
hilation of quark-antiquark pairs. Through this mechanism the quark masses
will be involved in determining the deconfinement temperature in a more di-
rect way. Unfortunately, the theory of interacting hadronic strings is still
unknown. Therefore, new nonstandard methods should be developed for
treating this problem.
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