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We review the gradual geometrization which has occurred in fundamental physics
from the discovery of special relativity in 1905 to the standard model in 1975.
After discussing symmetry and ordinary supersymmetry, we introduce internal
supersymmetry. Here the even and odd generators correspond to the form-calculus
of a gauge theory with spontaneous symmetry breakdown, with the gauge field one-
forms occupying the even submatrices and the Higgs fields zero-forms occupying the
off-diagonal submatrices. The Grassmann superalgebra is not (super)-abelian and
closes on some semi-simple subalgebra. We study two examples: the electroweak
SU(2/1), predicting the mass of the Higgs particle around 130 £+ 10 GeV, and
P(4R) for Riemannian gravity. Internal supersymmetry does not operate on the
physical Hilbert space and as a result of non-commutative geometry, the matter
fields in its fibres relate to Z(2) gradings other than that of quantum statistics
(chirality in our examples).

1 Introduction - and the Physics of Time

Hagen Kleinert is sixty according to classical clocks, but this is clearly a
misinterpretation of the data. Observations show that Hagen and Annemarie
have not aged at all. Had they both been born with twins, he with a twin
brother, and she with a twin sister, we might have been able to explain our
paradox as a complicated extension of the twin paradoz, conjecturing that we
are now facing the travelling twins, who have just returned and replaced the
sedentary couple. However, as the Kleinerts never had a twin couple, we must
be facing some as yet uncharted and unidentified relativistic effect, perhaps
related to some unknown aspect of quantum gravity - coupled a la Penrose
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with the collapse of the state-vector and thus to the Everett-Wheeler Many-
Worlds interpretation .... With the effect still shrouded in mystery, I have
had to go along and behave as if I believed that Hagen is indeed getting older
(wiser he certainly is) and I am happy to dedicate this study to his (classical)
sixtieth birthday and wish Annemarie and him many happy returns. I shall
do my best to be around when Hagen’s classical age is 75, and partake in the
next Festschrift, but, alas, I cannot make a firm commitment on this matter.

2 Steps in the Geometrization Process

Hagen’s contributions to Physics in the last decade have mostly been of a
geometrical nature, involving Riemannian manifolds with torsion - whether
in 3 dimensions and the physics of materials (transitions between phases,
e.g. melting [1]) or in 4 dimensions and issues relating to general relativity [2].
We physicists of the late XXth (and hopefully of the early XXIst) century
have enjoyed the aesthetics and symmetries of the geometrical representation.
Gradually, between 1905 and 1975, it has become the unique language of
physics at the fundamental level [3]. I remind the reader that this takeover
occurred in the following stages:

(a) Minkowski’s 1907-08 geometrical reinterpretation of Einstein’s (1905)
special theory of relativity, namely of the symmetries of Maxwell’s electro-
magnetism, as identified by Einstein,

(b) The Einstein-Grossmann application and extension of that model
(1911) in a program aiming at reconciling Newtonian mechanics with the
above symmetries of electromagnetism, leading to Einstein’s construction of
the general theory of relativity (GR, 1915) as the new (and fully geometrical)
theory of gravity,

(¢) The construction of a gauge theory, started in 1918 with H. Weyl’s
(failed) first attempt at a theory of electromagnetism (based on the assump-
tion of local scale-invariance) unifiable with Einstein’s gravity (i.e. geometri-
cal). It was followed by his 1928 successful version, in which the geometry is
that of a fibre bundle, with fibre group U(1) realizing local invariance under
transformations of the complex phase angle (introduced by quantum mechan-
ics). This was then generalized (1953) to non-abelian groups by C.N. Yang
and R.L. Mills and applied (1975) to the S[U(2) ® U(3)] fibre group of the
standard model. The latter emerged, on the one hand, as a result of our
(1961) SU(3)favor classification of the hadrons and the subsequent (1962-64)
discovery of the structural mechanism to which it is due, namely the quark



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Higher Algebraic Geometrization Emerging from Noncommutativity 175

model, followed first (1964-1972) by the introduction of (global) SU(3)color for
the sake of preservation of Fermi-type quantum statistics and then by quan-
tum chromodynamics (QCD), namely local SU(3)color, after the discovery
(1973) of asymptotic freedom. The geometrical nature of local gauge theories
was emphasized (1974) by C.N. Yang and T.T. Wu.

(d) Two other developments (also launched in the early twenties) were
suggested in the context of further unification:

I. Adding dimensions - the program suggested by T. Kaluza (1921) and
by O. Klein (1924).

II. Following Einstein, adding an antisymmetric piece to the metric or
connection.

Developments in the seventies in the unification program, namely in
N, > 1 supergravity and in superstring (or “M”) theory have converged on
a fusion of both these features. After the establishment of relativistic quan-
tum field theory by its success (1948) in quantum electrodynamics (QED),
the gravitational field of GR, representing the “fabric” of space-time, should
by itself be treated as a quantum field of Bose-type. This thereby does not
allow a role for an antisymmetric metric by the spin-statistics theorem. The
necessary conditions, however, are induced through (1971-73) supersymme-
try, which adds fermionic degrees of freedom to any boson. Gravity thereby
becomes embedded in supergravity, with the antisymmetric characteristics of
(IT) represented by the presence of torsion. Finiteness considerations, namely
the cancellation of chiral and dilational anomalies, then impose specific higher
dimensionalities as in (I). The two programs — torsion and Kaluza-Klein di-
mensionalities — are thus presently actively pursued in the context of the
11-dimensional Ny = 1 supergravity constructed by E. Cremmer and B. Ju-
lia (1978), reducible in 4-dimensions to the Ny = 8 mazimal or saturated
supergravity, a version of supergravity which has been shown to represent
the low-energy quantum field theory limit of “M-theory”, the state of the art
theory of post-Planck level and quantized gravity. [Ny is the “number of su-
persymmetries”, i.e. the dimensionality of the internal degree of freedom, if
any, carried by the Lorentz spinor multiplets of supersymmetry generators].

(e) An independent additional geometrical entry is due to Jean Thierry-
Mieg. His 1979 thesis and related articles [4,5] identify the ghost fields of a
Yang-Mills gauge theory as conceived by R.P. Feynman (1962) in order to
guarantee off mass shell unitarity and further developed by B.S. De Witt,
L.D. Faddeev, and V.N. Popov with odd elements of the form calculus, the
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Grassmann “supercommutative” superalgebra of the gauge theory. Moreover,
the “BRST” constraining superalgebra, linking together physical and ghost
fields is seen to coincide with the structural equations of the fibre bundle.

(f) The superalgebraic system I describe in the rest of this article derives
from the latter. It consists in a nonsupercommutative extended superalge-
bra of forms, defined over a fibre-bundle whose base-space is split by a Z(2)
grading but which does not necessarily coincide with the Z(2) of quantum
statistics (in my examples, it will be the Z(2) of chirality). The first model of
this type was discovered (1979) by the present author [6] and independently
by David Fairlie [7] and involved the simple Lie supergroup SU(2/1) as an
“internal supersymmetry”, an irreducible algebraic extension of electroweak
unification’s (spontaneously-broken) local - SU(2) x U(1) symmetry. The the-
ory has been applied [8] to predict the mass of the Higgs meson, yielding
m(H) = 2m(W) in the exact (and unrenormalized) limit, while the inclusion
of renormalization effects, as observed in couplings [9], yields as final result
m(H) = 130 &£ 15 GeV. Note that 9 “events” have been observed at CERN
in the fall of 2000 with a Higgs meson mass around 115 GeV.

3 Superalgebras, Supermatrices, and Z(2)-Gradings

I first remind the reader of the main definitions and results relating to Lie [10]
and to Grassmann (super) algebras [11]. The first involve the application of
a Z(2)-grading on the basis of the Lie superalgebra as a linear vector space;
the g(z) eigenvalue also determines the nature of the Z(2)-graded super-
Lie bracket [z,y} and of the relevant super-Jacobi identity. Let the variable
E = /1 represent the two elements of the finite group Z (2). The superalgebra
splits into two subspaces, labelled by that grading,

E=V1, g=log_,(E € Z(2),),
L=Ly+ Ly,
glx € Lo) =0, glye L) =1,
9([z.y}) = g9(z) © g(y) = 2,
[z, y} = —(=1)?@ Wy, 2},
[z, [y, 2} = [z,y}, 2} + (=1)9@9W) [y [z, 2}}. (1)

In some cases, there also exists a Z-grading z(L,) € Z, where z is a “quantum
number” which is additively preserved by the super-Lie-bracket, though the
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nature of that bracket itself is still determined by the Z(2).-binary grading
within Z, Z D Z(2),,

L= ZLi, and for any z € L%, y € L°, [z,y} C L*T°. (2)

Lie superalgebras can always be (and generally are) represented in matrix
form, organized in quarters Q4 according to

Ag | A v
ol o 6

|Bl|B0|7

)

the ¢ = 0 and g = 1 generators thus spanning the squares along or off the
main diagonal, respectively. With this supermatrix acting on a column-vector
V split in two by some Z(2),, the g = 0 quarters are the endomorphisms of
V, namely Ag = End (V°),By = End (V!), whereas the ¢ = 1 quarters
represent the homomorphisms between the two sectors in V', namely A; =
Hom (V4, Vi), B1 = Hom (V, Vi). In supersymmetry, the Z(2), is again
the quantum statistics characteristic and correlates with the statistics of the
Hilbert space particles in a supersymmetry study.

In the case of a Grassmann (super-commutative) algebra of differential
forms, the Z grading and its odd-even partitioning Z(2)y C Z, respectively,
represent the total count in the applications of the exterior derivative d (or
the number of differentials involved as factors), and the odd/even partitioning
to which this degree belongs. If applied to differential forms arising in an
anholonomic basis or in a supergroup manifold, the Z(2) grading fixes the
exterior (wedge) product according to the rules,

dz® A dQEb — 7(71)g(a)g(b)dxb A dxa,
Ff — Za dr® A dr®2 A - - - d;p“f]—'a]_@maf (x) s (4)
F}z /\FJIZ — (_1)(f1'f2+g(a)g(b))FJlj A F]‘} .

A third category of Z(2) gradings describes the intrinsic Poincaré or Lorentz
group Z(2)s-grading of the variables of space-time and its double-covering
(spin) and the corresponding exterior-derivative operator, as in the case of
the Salam-Strathdee “superspace” of supersymmetry. There would then be
a need to characterize algebraic structures by Z(2)s, i.e. yet another Z(2),
whose eigenvalues we denote by s(z). As we do not deal here with “classical”
[Golfand-Likhtman/Wess-Zumino] supersymmetry, we shall not use the s(x).

We now discuss a coupling between superalgebras, in particular the case in
which the Lie superalgebra matrices are valued over Grassmann superalgebras
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of differential forms. In these “directly coupled” superalgebras (we use the
direct product symbol), the multiplication is fixed by the definition of the
Z(2) grading as the base (—1) logarithm of the elements of Z(2), namely the
square-roots of the identity, so that for

A:A0+A17 F:FO+F13
(AR F)o=A® Fy @ A1 ® F1, (5)
(A®F)1:A1®F0@A0®F1,

and the direct product for matrix-elements in two matrices
(a@p)(a ®p') = (1) P9 (ad’ @ pp'), (6)

with the sign fixed by the Z(2) eigenvalues of p and a’, once a’ has to move
through p to get to a. In any case, the overall grading h is given by

h(a®p) = g(a)f(p) + f"(y € rn) = 2. (7)

The simple and semi-simple Lie superalgebras have been classified by
V. Kac [12].

4 The Quillen Superconnection

After T had conceived SU(2/1), Jean Thierry-Mieg and I investigated the
possibility that the system of forms (the Grassmann superalgebra) in a Yang-
Mills theory, when extended by Higgs fields (i.e. in cases of spontaneous break-
ing of local symmetry) might generate a nonsupercommutative (or “nonsuper-
abelian”) superalgebra. Such an extended Grassmann superalgebra might
sometimes happen to coincide with a simple Lie superalgebra [SU(2/1) in
the electroweak case, etc.]. The idea was partly triggered by the composition
of the Lagrangian in such models, with a term in the Higgs potential quartic in
the Higgs field: such a term could be reproduced by a Lagrangian quadratic
in the curvatures, provided these curvatures be taken for a supergroup, in
which the even directions ¢ = 0 in the superalgebra’s Z(2), grading are
spanned by the original gauge group, while the Higgs fields span the g-odd
directions. At that stage, there was no such rederivation for the remain-
ing part of the Higgs potential, namely the spontaneous symmetry-breakdown
triggering term, quadratic in the Higgs fields and similar to a mass term - but
with the inverted sign. In identifying the Higgs fields themselves with even
elements in the Grassmann algebra’s form-calculus Z(2)¢, we were limited
at this stage [13], as we had not dared go beyond Thierry-Mieg’s original
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identification of the ghosts as vertical components of the gauge fields, packed
into contracted one-forms (in the fibre’s direction) and the view in which the
Higgs fields are ghosts of ghosts, i.e. two-forms, twice vertical. For the group-
elements to be fully bosonic and Lorentz-invariant, the parameters would
coincide for the even subgroup with its ordinary scalar parameters, while the
odd part would have the Lorentz-scalar anticommuting ghosts (one-forms in
our geometric interpretation of ghosts and BRST).

More about our SU(2/1) example. The group is homomorphic with
Osp(2/2), whose fundamental representation is 4-dimensional and fits the
quarks [14]. Moreover, one is allowed to add one constant real number to
the diagonal quantum numbers; but if by adding one gets integer values for
Y, and for the electric charges - the matrix reduces to a 3-dimensional one.
The group thus “knows” that quarks have fractional charges while leptons
carry integer ones. Note also that since I, = su(2) and I,%g = 0, we have
for the supertrace sTr(IZ) = 0; also, as the electrically-charged leptons or
quarks are all massive and thus appear both on the right-chiral and left-chiral
eigenstates, we also have str(Q) =0 .

Some time later and with a more daring mathematical motivation,
D. Quillen [15] postulated his theory of the superconnection, in which the
matrix-elements in the odd (g(a) = 1) and even (g(a) = 0) submatrices of
a superalgebra are valued over the Grassmann supercommutative zero-forms
(f = 0) and one-forms (f = 1), respectively, the intertwined coupling thereby
ensuring that the total grading be odd everywhere, t = g + f = 1. It was
shown that the 1979 electroweak SU(2/1) could naturally be recast in this
mold [16].

5 Noncommutative Geometry: The Electro-Weak Higher Alge-
braic Geometrization

The third and last step has consisted in reproducing the entire Yang-Mills
Lagrangian with spontaneous symmetry breakdown directly from one single
invariant; in other words, developing a further generalization which has al-
lowed doing it by squaring one single “curvature”, the corresponding gener-
alized two-form. It was provided by a variant of A. Connes’ Noncommutative
Geometry [17]. These further developments have drawn on a generalization of
the concept of parallel transport, as realized by the application of a (covariant)
derivative, namely a derivative plus a connection.

At the same time, it also resolved a seemingly paradoxical feature of the
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original “internal supersymmetry” interpretation, namely under the action of
the g-odd generators of the superalgebra, the absence in the particle Hilbert
space of boson to fermion transitions and vice versa. Instead, Hilbert space
has carried some other Z(2) grading, unrelated to quantum statistics - chi-
rality in the electroweak case, - so that the endomorphisms induced by the
odd generators produce a change of chirality, while the even endomorphisms
preserve it.

R. Coquereaux and F. Scheck [18,19] were the first to show that this
interesting result - namely the interrelationship between physically different
Z(2) groups - one in the vector space upon which the transformations are
enacted and one in the superalgebra - could be treated as a development of
noncommutative geometry (NCG). It was shown that the 1979 electroweak
SU(2/1) could naturally be recast in this mold [18-20].

The new arena is a fibre bundle with a non-simply connected base space,
namely a direct product of a two-point space Z(2); the points (1, —1) in this
realization of Z(2) are labelled L&R B = Z(2) ® M(1/,3) = M(1,3)L ®
M(1,3)r [21]. The gauge-group is the same over the entire basis, but the two
fibres carry different representations: for the SU(2/1) example (we refer the
reader to Ref. [14] for the detailed algebraic features of this symmetry), the
upper (left-chiral) part of V is an Jiere = 1/2 = isodoublet (19 ) 1 lel) with weak
hypercharges Y,, = —1, whereas for the right-chiral liesy = 0, Y, = —2 (the
assignments were fixed at the time by application of the Gell-Mann/Nishijima
rule, as adapted to weak interactions).

Among several new features in noncommutative geometry, the most rele-
vant one is its generalization to discrete spaces of concepts originally related
to differentiable manifolds. One such concept, relevant to our present issue,
is parallel transport [20]. To move from one point v (z) on the fibre, over
the point 27, € My in the left-chiral space, to another point e, (z,) on that
fibre but over a different position z/; in the same left-chiral space, we just use
the partial derivative 9, for an infinitesimal move by a length €*(x) and later
integrate. To preserve the self-parallelism of the fibre at different places, we
add a connection A, (xz) and use a covariant derivative D, = 09, + A, (zr).
The same is true for moves on the right-chiral space. In principle, this motion
is not different from the usual symmetric case - except for the interface with
the chiral matter fields.

What do we do, however, to go from vl(z € M) to eB(y =€ Mpg)?
Besides using the above means, we also have to “jump” between the two
chiral spaces - or better, directly between the relevant fibres over them. This
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is a discrete move and it will be achieved by a finite matrix, in SU(2/1) by e
(same as X in SU(3)), which relates e; — €'5. It should be anti-hermitian,
so that we define the matriz-derivative as T := iug. At the same time,
however, we need to perform a discrete change in the fibre itself, i.e. transform
(I, =1/2,1I% = =1/2,Y,, = =1) = (I, = IZ =0,Y,, = —2), a task for which
an appropriate connection is required. It has to resemble A as to its Lorentz
properties - i.e. it is a scalar. We also note its quantum numbers in SU(2/1):
I, =1/2,Y,, = —1. This is the Higgs field ®(x)! Altogether, we shall have
yet another new piece in the covariant derivative. In the SU(2/1) internal
supersymmetry we have a fibre-bundle with structure group SU(2/1) over a
split basis (Mp & Mg) and get the expression for the overall curvature

R=dv+w?=dA+ A2+ 0> +dd + AP + TP = Ry + DD
+c:v1/277’ (8)

where we regroup the terms in their traditional setup,
Ryy =dA+ A%, D® =dd+ A®, V =[(®)*) +[TP]*. (9)

Squaring that total curvature with its Clebsch-Gordan coefficients and apply-
ing 72 = —1 yields the conventional Weinberg-Salam Hamiltonian

Hyy =*Ryy A Ry,
H(¢)kinetic = DP? ; (10)
H(¢)potential = V<I> = _M(I)2 + )\((13)4 .

6 Higher Algebraic Geometrization and Riemannian Geometry

One of the macroscopic features of this Universe is its obeying the Riemannian
constraint, namely,

ng,uu = Qp,uu =0. (11)

Following Smolin [22], we have conjectured that this describes the state of
affairs at low-energy, arising through the degradation of the basic (high-
energy) microscopic state, which is then unconstrained and endowed with
more symmetry. Assuming the original and quantum-era Universe to have
been affine [23-25] we may be able to throw some light on the symmetry-
breaking mechanism. We have conjectured [26] that this symmetry break-
down occurred through a mechanism of the same type studied in this article.
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I have found that the Higher Algebraic Geometrization is provided here
by the simple superalgebra p(4, R), a “hyper-exceptional” in Kac’s list. The
algebra of the homogeneous symmetry group SL(4, R) on the tetrad frames
will sit in the even quarters, i.e. Ag, Bp in Eq. (3), of the 8 x 8 matrices of the
defining representation of P(4, R), along the diagonal. SL(4, R) will be in its
covariant representation in Ag, in the contravariant in By. A; will contain
the 10 symmetric matrices (out of 16) in GL(4, R) and B; will contain the 6
antisymmetric ones.

The matrix-derivative will be given by a wnit matriz in A; (or by a
Minkowski metric, depending on the issue) and break SL(4, R) down to SO(4)
or SO(3,1), i.e. to Riemannian geometry. To justify the introduction of the
matrix-derivative we have to start with a chirality-split base space - but this
is precisely what we have when we take a Dirac spinor (1/2, 0) & (0, 1/2)
or a world spinor [27-29] with this lowest state. We may now write the
full “extended curvature” of P(4, R) - including the matrix-derivative piece.
It includes the “SKY” [30-32] quadratic SL(4, R) Lagrangian, the kinetic
and gauge terms D®* and D®~, respectively, for the two Higgs holonomic
scalars (one a symmetric tensor in the frame indices, one an antisymmetric),
a matrix-derivative generated T'®~ which will trigger the spontaneous sym-
metry breakdown, and a term quadratic in the Higgs fields {®T®~}. T have
described the physical effects in detail in Ref. [26], with results fitting the
observed low-energy Riemannian system.
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