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Using the renormalization group method, we improve the first-order solution of the
long-wavelength expansion of the Einstein equation and obtain the renormalization
group equation. The solution of the renormalization group equation shows that the
renormalized metric describes the behavior of the gravitational collapse in the ex-
panding Universe qualitatively well and is suitable for modeling an inhomogeneous
Universe.

1 Introduction

Our Universe seems to be very close to a Friedmann-Robertson-Walker
(FRW) space-time at a length scale of the order of the Hubble radius, but
the metric and matter content appear to be highly inhomogeneous at smaller
scales. The conventional cosmological perturbative approach [1] treats such a
situation as the homogeneous isotropic background plus a small perturbation,
and investigates the evolution of linear fluctuations. We must go beyond the
linear approximation to treat the nonlinear structure and to construct a suit-
able model of an inhomogeneous Universe which is close to a FRW Universe
on a large scale. The spatial gradient expansion [2] of the Einstein equation is
a nonlinear approximation method which describes the long-wavelength inho-
mogeneity in the Universe. This approximation scheme expands the Einstein
equation with respect to the order of the spatial gradient. As a background
solution, we solve Einstein’s equation by neglecting all spatial gradient terms.
The resulting solution has the same form as that for the spatially flat FRW

759



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

760 Y. Nambu

Universe, but the three-metric can have a spatial dependence. It is possible
to include the effect of spatial gradient terms by calculating the next order.
This method can describe a long-wavelength nonlinear perturbation without
imposing any symmetry for a space, and is suitable for analyzing the global
structure of an inhomogeneous Universe.

However, this scheme is valid only for a perturbation whose wavelength
is larger than the Hubble horizon scale. For a matter field which satisfies
the energy conditions, the perturbation terms induced by the spatial gradient
terms grow in time and finally dominate the background solution. This occurs
when the wavelength of the perturbation equals the Hubble horizon scale.
After this time, the wavelength of the perturbation becomes shorter than the
horizon scale and the result of the gradient expansion becomes unreliable.

A similar situation occurs in the field of nonlinear dynamical systems.
To obtain the temporal evolution of the solution of a nonlinear differential
equation, we usually apply a perturbative expansion. But naive perturbation
often yields secular terms due to resonance phenomena. The secular terms
prevent us from getting approximate but global solutions. There are many
techniques to circumvent the problem, for example, the averaging method, the
multi-time scale method, the WKB method and so on [3]. Although these
methods yield globally valid solutions, they provide no systematic procedure
for general dynamical systems because we must select a suitable assumption
on the structure of the perturbation series.

The renormalization group method [4] as a tool for a global asymptotic
analysis of the solution to differential equations unifies the techniques listed
above, and can treat many systems irrespective of their features. Starting
from a naive perturbative expansion, the secular divergence is absorbed in the
constants of integration contained in the zeroth-order solution by the renor-
malization procedure. The renormalized constants obey the renormalization
group equation. This method can be viewed as a tool of system reduction.
The renormalization group equation corresponds to the amplitude equation
which describes slow motion dynamics in the original system. We can de-
scribe complicated dynamics contained in the original equation by extracting
a simpler representation using the renormalization group method.

In this article, we apply the renormalization group method to the gradient
expansion of Einstein’s equation. Our purpose is to obtain the renormalized
long-wavelength solution of Einstein’s equation which is also valid for later
times. Through the procedure of renormalization, we extract slow motion
from the Einstein equation [5].



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Renormalization Group Method and Inhomogeneous Universe 761

2 Renormalization Group Method

The renormalization group method [4] improves the long-time behavior of
a naive perturbative expansion. We explain the basic concept of the renor-
malization group method using two examples. The first one is a harmonic
oscillator. The equation of motion is

i4zr=—cu, (1)

where € is a small parameter. We solve this equation perturbatively by ex-
panding the solution with respect to e:

r=x0+ex;+---. (2)
The solution up to O(e) becomes
& = Bycost + Cosint + % (t — to)(Co cost — Bosint) + O(¢2),  (3)

where By and Cy are constants of integration determined by the initial con-
dition at arbitrary time ¢ = ¢y3. This naive perturbation breaks down when
€ (t —to) > 1 because of the secular term. To regularize the perturbation se-
ries, we introduce an arbitrary time u, split t —tg as t — u+ u — to, and absorb
the divergent term containing u — tg into the renormalized counterparts B
and C of By and Cy, respectively.

We introduce renormalized constants as follows:

By = B(/’L) + 65B(U7t0)a Co = C(:u) + 65C(U7t0)7 (4)

where § B and 6C' are counter terms that absorb the terms containing u — g
in a naive solution. Inserting Eq. (4) in Eq. (3), we have

x = B(u)cost + C(u)sint + e{éB cost + dC'sint

S — = 10)(C) cost — B sin) ) (5)

We choose 6B and 6C as

_|_

5B(ps to) + 51— t0)C(1) =0, 50 to) — 3 (1~ t0)Bx) =0.  (6)

Using the relations e 6B = By — B(p), and € C = Cy — C(1), we obtain

B(to) = B(u) — 5(n—t0)C(w).  Clto) = Clu) + 5(n— t0)BGs)- (1)
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These equations define the transformation up to O(e):

Ry—to = (Blto), C(to)) = (B(n), C(n)),

and the transformation forms a Lie group up to O(e). Assuming the properties
of a Lie group, we can extend the locally valid expression (7) to a global one,
which is valid for arbitrary large p — to. We apply this transformation to get
(B(p),C(p)) at arbitrary large p. By differentiating Eq. (7) with respect to
u and setting tqg = u, we have the renormalization group equations

S —sCw. =58, (®)

The renormalized solution becomes
x = B(u)cost + C(u)sint + % (t — p)[C(p) cost — B(p) sin t]. 9)

Solving the renormalization group equations (8) and equating p and ¢ in (9)
eliminates the secular term and we get a uniformly valid result

= B(0)cos (14 5) t+CO)sin (1+5) & (10)

The second example is the Einstein equation for a FRW Universe with dust.
The spatial component is
P € —2a
a+ - =——e , 11
+3 5 (11)

where a(t) is the logarithm of the scale factor of the Universe a(t) and € is
the sign of the spatial curvature. The exact solution is given by

ag (1 —cosn), t=ag(p—sinny) fore=1,
a(t) = e*® =< agn?/2, t=aon®/6 for e =0, (12)
ag (coshn — 1), t = ag (sinhn —n) for e = —1.

We solve Eq. (11) perturbatively by assuming that the right hand side is
small. This represents an expansion with respect to a small spatial curvature
around the flat Universe. By substituting o = ag +eaq +--- in Eq. (11), we
find the naive solution
9

a=Int+C —6%67200(7'—7'0) +O(é%), (13)
where 7 = t?/3 is a new time variable and Cy a constant of integration de-
termined by the initial condition at 7 = 9. The O(€) term is secular and we
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regularize this term by introducing the arbitrary time p and the renormalized
constant Co = C'(u) + €5C (u, 10):

a=InT+C(u) +edC(u,10) — € 29—06720(“) (T —p+p—m1o). (14)
The counter term dC is determined in such a way that it absorbs the term
depending on p — 7q:
5C(1,m) = o 20 (1= ) = 0. (15)
This defines the renormalization group transformation
Ryery : Clro) — C(11)
according to

C) = Clm) = € e (= m), (16)

and this transformation forms a Lie group up to O(e). So we can have C(u)
for arbitrary large values of ;1 — 79 by assuming the property of a Lie group.
This makes it possible to produce a globally uniform approximative solution
of the original equation. The renormalization group equation reads

IC () o 2emw

o 20 '

(17)

and its solution is

C) =51 (e= 3o). (18)

where ¢ is a constant of integration. The renormalized scale factor is given
by

9¢ 1/2
a(t) = e = 700 = ¢2/3 [ ¢ = Z42/3 . (19)
10

As the zeroth-order solution, it is possible to include another integration
constant tg which defines the origin of the cosmic time ¢. By requiring that
the renormalization group transformation forms a Lie group, it can be shown
that tg is not renormalized. Hence it is sufficient to consider the solution with
the boundary condition a(t = 0) = 0 which fixes the value of ¢y to zero. This
point is different from the example of the harmonic oscillator, in which case
two integration constants B and C are renormalized.
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Figure 1. The evolution of the scale factor for a closed FRW Universe with dust. The
solid curve is the exact solution, the thin dashed curve is the naive solution and the thick
dashed curve is the renormalized solution.

We compare the renormalized solution (19) with the exact solution (12)
and the naive solution (13) for the case of a closed Universe (e = 1). We
choose ap = 2/9 and ¢ = 1. The scale factor of the exact solution has a
maximum at ¢ = 27/9 and goes to zero at t = 47/9. The naive solution
does not show this behavior. The renormalized solution improves the naive
solution and reproduces the expanding and contracting feature of the exact
solution (Fig. 1).

3 Application of Renormalization Group Method to Gradient Ex-
pansion

For the dust dominated Universe, the long-wavelength solution up to the
second order of the spatial gradient becomes

9 1
yij = tY3 [hij - gt2/3 (Rij(h) - ZR(h)hijﬂ , (20)
4 9
P=55 (1 — 2—0t2/3R(h)> , g =0,

where h;; is the seed metric which is an arbitrary function of the spatial
coordinate. We can see that the perturbation term, which originated from
the spatial gradient of the seed metric h;j, grows as the Universe expands
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and finally has the same amplitude as the background term at ¢t ~ H~! when
the wavelength of the perturbation equals the Hubble horizon scale. After
this time, the wavelength of perturbation becomes smaller than the horizon
scale and the long-wavelength expansion breaks down. To make the gradient
expansion applicable to the perturbation whose wavelength is smaller than
the horizon scale, we use the renormalization group method.

We renormalize the secular behavior of the three-metric «;;. By intro-
ducing a new time variable 7 = t2/3 and the initial time 7o by redefining
the seed metric h;;, we define the renormalized metric and the counter term
hz](.’IJ) = hij(l‘, M) + 5hij(£b, M,y To) as

hiy () — g(T — ) (sz - iR(h)hm‘)

9 1
= hij(x,,u) + 5h1j — g(T — K + n— T()) (RU — ZR(h)h”> . (21)
By determining the counter term in such a way that it absorbs terms con-
taining p — 79, we have

9 1
b ) = ) = 300 = ) (Riyh0) = RO ) )« (2
This equation defines the renormalization group transformation
Ry—ro + hij(10) — hij(),

which is a Lie group up to O(e). We can therefore get the value of h;;(u) for
arbitrary p using relation (22) by assuming the property of a Lie group. The
renormalization group equation is obtained by differentiating Eq. (22) with
respect to p and setting o = p,

9

3]
g ) = =2

| Rig () = 3ROy ()| (23

such that the renormalized solution is

43 4 348
We solve the renormalization group equation (23) for some special cases and
see how the renormalization group method improves the behavior of the long-

wavelength solution.
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3.1 FRW Case

The metric is

s ,0) = (1) 7y (0), Regor) = S35 Rlo), (25)

where 0;;(x) is the metric of the three-dimensional maximally symmetric
space. In this case, the renormalization group equation (23) reduces to

0

9 9
— = —— ==+1 2
SO r) = — 1ok, (k=++1,0), (26)

and the renormalized solution is

9k 4 27  kt?/3
A3 e 2R p2/3) 4 = 2/
Yij =1 <c 10t >0U(x), p 32 <1+ 202 ?]8 t2/3) . (27)

Thus the scale factor of the Universe is given by

a(t) = t**\Jc— %tw, (28)

which is the same as the solution (19).

3.2 Spherically Symmetric Case
In spherical coordinates (r, 0, ¢), the metric reads
hi; = diag (Az(r, r), B*(t,r), B*(1,r)sin’ cb) . (29)

The renormalization group equation (23) becomes for the (rr component)
and the (60 component)

dA 9 ( A* A,B, (B, B,
2‘45_5(@_ AR 232 T B | (30)
OB 9 ( 1 (B,)
235?(? 2 | (3D

respectively. The solution is given by

B- (1 - 90{5)’") T) Yy, A Br (32)
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where a and [ are arbitrary functions of r. The renormalized metric and
density are

2/33 2 2
2 _ 2 (¢ 7)o 2/3 2
ds? = —di* S dr —l—(t / B) 02, (33)
e} Ta
o= 4 4 3 3a ﬂ,ra(l - %T) + aﬂ"ﬂ (1 7 220 T) (34)

312 1 5t/3 (1-27) [(1—%87) B, — sa,rBT]

This solution corresponds to the Toleman-Bondi solution [6]. The renormal-
ized solution reproduces very well the feature of the metric of the spherically
symmetric gravitational collapse of dust.

3.3 Szekeres Solution

In Cartesian coordinates (z,y, z), the metric is assumed to be
hi; = diag (1,1, A*(7, 2,9, 2)) . (35)

The renormalization group equation (23) reduces to the following three equa-
tions for the xy, zz, and zz component

Ay
0= ey
A b
_ Ay — A
0=—"1 (36)
0A? 1
— = ——A(Az + Ay
87' 2 ( 5 + :yy)
The renormalized metric is
2
2 _ 32 44/3 2 2 2 2 99(2) 2/3 2
ds® = —dt* +t*3 |da® + dy* + | g(2) (z —|—y)+—5 25 4+ c(z) ) d2?|.

(37)
This is the exact solution [7] of Szekeres, which represents a one-dimensional
gravitational collapse. It is known that the “naive” gradient expansion re-
produces this solution by including the fourth-order spatial gradient [2]. We
obtained the solution using the second-order spatial gradient with renormal-
ization. In this case, the renormalization procedure strongly improves the
naive solution.
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4 Summary

After applying the renormalization group method to improve the long-time
behavior of the solution of the gradient expansion, we obtained the solutions
of the renormalization group equation for FRW, spherically symmetric and
Szekeres cases. The behavior of the renormalized solution indicates that they
describe the collapsing phase of the system qualitatively well. The renormal-
ization group method is regarded as the procedure of system reduction. This
means the renormalization group Eq. (23) is the reduced version of the origi-
nal Einstein equation and describes the slow motion dynamics of the original
equation. We expect that the renormalization group equation (23) has phys-
ically interesting properties and solutions which are contained in the original
Einstein equation.

We can consider the cosmological back reaction problem [8,9] from the
point of view of the renormalization of the fluctuation. The naive solution
represents the evolution of the perturbation with the fixed background met-
ric. By renormalizing the naive solution, the constants contained in the back-
ground solution become time dependent due to the spatial inhomogeneity.
Therefore we can investigate how the spatial inhomogeneity affects the “back-
ground” metric by solving the renormalization group equation. Based on the
conventional cosmological perturbation, we can describe the back reaction
effect by renormalizing the second-order zero mode perturbation [10].

For the quantum dynamics of an inflationary Universe, it is possible to
derive the basic equation of the stochastic approach by using the renormal-
ization group method. In this case, the long-wavelength quantum fluctuation
is renormalized to the slowly varying background classical field. We believe
that the renormalization group method gives us further understanding of the
inhomogeneous cosmology.
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