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The Lieb-Schulz-Mattis theorem predicts the existence of “soft modes” (zero en-
ergy excitations) in quasi one-dimensional quantum spin systems exposed to an
homogeneous external field. The soft modes appear as zeroes in the dispersion
curve and as singularities in the static structure factors. The critical behavior at
the (field dependent) soft mode momenta is described by conformal field theory.
Breaking of translation invariance, e.g. by the modulation of the external field of
the nearest-neighbor coupling, is shown to yield an efficient mechanism to gener-
ate gaps and plateaus in the magnetization curve. The plateaus appear at those
magnetizations where the period of the modulation coincides with the soft mode
momentum. Spin ladder systems develop a characteristic sequence of magnetiza-
tion plateaus. Experimental results on plateaus in magnetization curves (so far in
two- and three-dimensional compounds) are discussed.

1 Introduction

Gaps in the energy spectrum play a crucial role in condensed matter physics.
Fundamental properties in superconductivity or in the fractional quantum
Hall effect originate from the existence of a gap between the ground state
and the excited states. The corresponding ground-state wave function de-
scribes cooperative phenomena, where infinitely many degrees of freedom act
together for example to build the Bose condensate of Cooper pairs in the BCS
theory or the condensate of composite fermions or bosons in the fractional
quantum Hall effect.

In this report, I present recent results on the mechanisms, which lead to
the formation of gaps in the energy spectrum of low-dimensional quantum
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spin systems. The corresponding Hamiltonians

H=> JH, (1)
1

H = Z S (2)

are built up from isotropic couplings of spin .S operators 5_';- and 5';+l at sites
¢ and ¢+ [. Many exact and numerical results on the one-dimensional system

with nearest-neighbor couplings have been accumulated during the last 70

years:

1)

(4)

The spin 1/2 system has been solved by Bethe [1] in 1931 with his famous
ansatz which allows the computation of the energy eigenvalues. Quite
recently an exact computation of the specific heat has been presented
by Kliimper [2]. An analytic derivation of the low lying excitations —
the so called two-spinon spectrum — and their impact on the dynamical
structure factor in the ground state has been achieved by Bougourzi,
Karbach, and Miiller [3]. The spin 1/2 system with nearest-neighbor
couplings is gapless. The critical properties — coded in the n-exponents
of the static structure factor — are well described by the predictions of
conformal field theory [4], which relates 1 to the finite-size behavior of
the energy eigenvalues [5,6].

The spin 1 system is not solvable with the Bethe ansatz or similar tech-
niques like the Yang-Baxter equations. Numerical results were obtained
by exact diagonalization with a Lanczos or conjugate gradient algo-
rithm and recently by means of the density matrix renormalization group
(DMRG) [7]. Haldane [8] formulated in 1983 his famous conjecture that
quantum spin chains with integer spin S = 1,2, ... have a gap, whereas
chains with half integer spin S = 1/2,3/2,... are gapless. Recent numer-
ical results [9] for spin 1, spin 3/2 and spin 2 chains support the Haldane
conjecture.

During the last 10 years, also ladder systems [10] — quantum spin sys-
tems between one and two dimensions - have been studied with numerical
methods like DMRG. Concerning the ground-state properties, the fol-
lowing peculiar property has been found: Ladder systems with an even
number of legs (I = 2,4,6,...) have a gap; those with an odd number
(1=1,3,5,...) have no gap.

The two-dimensional spin 1/2 system has been studied intensively after
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the discovery of high T, superconductivity motivated by the following
fact: The undoped material LasCuQO,4 shows antiferromagnetic order at
low temperatures in the CuO planes. The corresponding order parameter
- the “staggered” magnetization, given by the static structure factor at
momentum 7 = (7, 7) - is nonvanishing in two dimensions [11] in contrast
to the one-dimensional case. We have studied the transition from two to
one dimension in a model with different nearest-neighbor couplings Jj
and J, along the horizontal and vertical directions. We find that the
staggered magnetization is non-negative for all couplings o = J /J > 0
and vanishes with an infinite slope for a = 0 (see Ref. [12]).

In this work, I will briefly review in Section 2 the Lieb-Schultz-Mattis theo-
rem [13] and its implications on the existence of soft modes in one-dimensional
quantum spin systems. Then I will demonstrate in Section 3 that breaking
of translational invariance is a very efficient mechanism for the formation
of gaps and magnetization plateaus. Section 4 is devoted to spin ladder
systems. It turns out that each spin ladder system with [-legs possesses a
characteristic sequence of magnetization plateaus. In section 5 I will report
on some compounds where experimentalists have found plateaus in the mag-
netization curve. Unfortunately, these compounds seem to have a two- or
higher-dimensional coupling structure.

2 The Lieb-Schultz-Mattis Theorem and the Appearance of Soft
Modes in One-Dimensional Quantum Spin Systems

Let me specify first my notion of a ground-state gap: There is no unitary
operator U, which creates, from the ground state |0), new states

[n) = U"|0) (3)

with energy expectation values
(n|H|n) — (0]H|0) = O(N~), (4)
coinciding with the ground-state energy Ey = (0|H|0) in the thermodynami-

cal limit. Of course, the new states |n) should differ from the ground state by
their quantum numbers. For translation invariant one-dimensional systems
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over a finite range L, the Hamiltonian is

=L
H=>"JH+BY 8. (5)
=1 i

Lieb, Schultz, and Mattis [13] have proposed the following operator U:

. N
U:exp{% ZiSi@)}. (6)
i=1

The Hamiltonian commutes with the total spin

N
S=>_ 5" (7)
i=1

and, in the presence of a magnetic field B, the ground state is magnetized:
M = S3/N. The magnetization M = M (B) follows from the magnetization
curve. Lieb, Schultz, and Mattis proved that the new states |n) = U™|0)
obey Eq. (4). Following the argument of Affleck and Lieb [14], the quantum
numbers of the new states can be seen by applying the translation operator

T|n) = ei[nq(M)+po]|n>, (8)
i.e. the momentum of the new states,
pn(M) = ng(M) + po(M), (9)
differs from the ground-state momentum po(M) by
q(M) = x(1 — 2M), (10)

unless nq(M) is a multiple of 2.
In the following, I will call the state |n) the n’th soft mode. Soft modes
appear as zeros in energy differences defining the dispersion curve

(U(q,M,N):E(q—i-po,M,N)—E(po,M,N) (11)

In Fig. 1 I show the dispersion curve for M = 1/4 in a model with nearest- and
next-to-nearest-neighbor coupling with & = 0 and o = 1/2, where o = J2/.J;
(see Ref. [15]). The first soft mode (n = 1) is clearly visible at ¢ = 7/2. The
second soft mode (n = 2) at ¢ = = still suffers from large finite-size effects.
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Figure 1. Dispersion curve (11) for M = 1/4, o = 0,1/4 on finite systems with N = 24, 28.
The dips at ¢ = /2, m occur at momenta of the first (n = 1) and second (n = 2) soft mode.

Conformal field theory makes a prediction on the finite-size dependence at
the soft mode

wlg = q(ar), 21, V== 20D (12)

which can be verified numerically. Moreover the coefficient (M) is related
to the critical n-exponent

n(M) = ; (13)

where v(M) is the spin wave velocity

v(M) = lim {E <p0+2—7T,M,N>—E(p0,M,N)} (14)
N—o0 N

For the nearest-neighbor model (a = 0), the energy differences, which enter on
the right hand side of Eq. (13) can be computed by means of the Bethe ansatz
on very large systems (N = 10%). Therefore, in this case, the field dependence
of the critical exponent n = n(M) is very well known (see Fig. 2) [16]. The
n-exponent describes the divergence in the static structure factor at the soft
mode g = q(M). The latter are defined as ground-state expectation values

So(g; M) = (0]0(q)O(=q)|0) (15)
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Figure 2. The critical n-exponent (13) versus magnetization M for & = 0. The energy
differences (12) and (14) were computed with the Bethe ansatz on large systems (N = 10%).

of appropriate Fourier transformed operators

O(q) = Z ei‘ZjOj, (16)

Oj = SJ(-S), (§j§j+1> geeay (17)
So (g (M), M, N) V=32 NImnAD, (18)

Figure 3 shows the g-dependence of the static structure factor for the dimer
operator §j§j+1 [15]. A clear singularity is seen at the first soft mode
(¢ =m/2). No singularity is visible at the second soft mode (¢ = 7). Ac-
cording to the Lieb-Schultz-Mattis theorem, the position of the soft modes
does not depend on the couplings (e.g. on a = Jo/J1). The critical exponents
n(M, «), however, do depend on «. For « large enough, the singularity at the
first soft mode is weakened and the second soft mode becomes visible.

3 Breaking of Translation Invariance: A Mechanism for the For-
mation of Gaps and Magnetization Plateaus

Translation invariance is essential for the validity of the Lieb-Schultz-Mattis
theorem. Breaking of translation invariance is a vital attack against the soft
modes. It has severe consequences.
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Figure 3. The static dimer structure factor (15) for M = 1/4, a = 0,1/4 on finite systems
with N = 24,28. A peak occurs at the first soft mode ¢ = 7/2. No peak is visible at the
second soft mode ¢ = w. The insets demonstrate the validity of (18) derived from conformal
field theory.

Let us consider the nearest-neighbor model
H=H, +BS®0)+0 (5<3> (@) + 5<3>(—q)) (19)

in a homogenous field B and a modulated field of strength §:
N
3)
5G)(q) = ZS]( )eias (20)
j=1

In Fig. 4(a) we see what happens if one switches on the perturbation § with
wave number ¢ = 7/2. For 6 = 0 we see a smooth magnetization curve
M = M(B). Indeed this curve has been computed at the beginning of the
sixties by C.N. Yang and C.P. Yang [17]; they used the Bethe ansatz to
compute the energy eigenvalues in the sectors with given magnetization

B(M) = E <M N %p) — (M, po). (21)

If we now look at § > 0 [18]; we see the emergence of a plateau at M = 1/4.
For this magnetization the wave number of the perturbing field ¢ = m/2
coincides with the first soft mode:

g=n(l-2M)= M= - — (22)

4
o’

N —
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Figure 4. The magnetization curve for the nearest-neighbor Hamiltonian H; with a pe-
riodic perturbation: (a) of the external magnetic field with wave number ¢ = 7/2 (cf.
Eq. (19)): Plateau at M = 1/4, and (b) of the nearest-neighbor coupling with wave num-
bers ¢ = w/3 and ¢ = 27 /3 (cf. Eq. (26)): Plateaus at M =1/6,1/3.

The connection between ¢ and M is a special case of a more general rule
established by Oshikawa, Yamanaka, and Affleck [19] on the position of pos-
sible magnetization plateaus. For small perturbations §, the length A of the
plateaus, i.e. the difference between the upper and lower critical fields, is

A = By — By, ~ &, (23)
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Mapping of the I-leg ladder on a one-dimensional system with modulated

i.e. scales with a power §¢, where € is given by the critical n-exponent
2
e(M) =

S 4-n(M)
Breaking of translation invariance can be achieved in many ways, e.g. instead
neighbor coupling

(24)
of modulating the external magnetic field we can modulate as well the nearest-
Di(q)

N

1 -

=3 (D1(q) + Di(—q)) = z;(‘m(q < 1)5iSit1.
1=

In Fig. 4(b) we can see the effect of a superposition of two modes:

(25)
_ 27 — ™
Di(g="Z)+D ( - —).

1 (q 3 ) +D1 (¢ 3
According to the rule (22) we observe two plateaus at

(26)
M=1 m=1
6 3

one-dimensional system

(27)
4 Gaps and Magnetization Plateaus in Spin Ladder Systems
A spin ladder system with [ legs - as shown in Fig. 5 - can be viewed as a

H=H +oH +D§”,

(28)

with nearest-neighbor coupling and couplings over [ sites [15]. The translation
invariant ring Hi, however, also contains “diagonal” couplings | — [ + 1,
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2] — 2]+ 1 (dashed lines in Fig. 5), which are absent in a normal ladder. We
subtract these couplings using the term

N
DY =" 708,81, (29)
n=1
0, n=1 -1
0) s ) ’
T { 0, mn=lI, (30)
l
I = b, (31)
The periodicity of the couplings,
/2 27N o]
JO — - _=%J
i Z cos i dlq ) (32)
7=0
leads to a Fourier decomposition of the “unwanted” couplings:
Dy =" 5,Di(a). (33)
q

The “unwanted” couplings induce a modulation of the nearest-neighbor cou-
plings with certain wave numbers ¢, which again generate magnetization
plateaus at M = 1/2 — q/27 provided that the first soft mode is active. This
consideration leads to the following prediction of magnetization plateaus for
| leg ladders:

23] 4 | 5 | 6
M|0][1/6]0;1/4 ] 1/10;3/10 | 0;1/6;1/3

Note, that the even [ ladders have a plateau at M = 0. This means they have
a gap in the absence of a magnetic field. The odd [ ladders do not have such
a gap. (I mentioned this phenomenon [10] in the introduction.) The table
means that one can associate a characteristic sequence of plateaus to each
ladder.

We have tested this prediction by a numerical calculation of the magneti-
zation curve in ladder systems with [ = 3,4 and 5 legs by means of the density
matrix renormalization group (DMRG). The gap in the two leg ladder had
been discussed before in the context of the compound CuGeOs, which shows
a spin Peierls transition [20].

The plateaus at M = 1/3 in the three leg ladder have been discovered
by Honecker and collaborators [21]. In Fig. 6 you see this magnetization
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Figure 6. Magnetization curve of a three leg ladder with plateau at M = 1/4: (a) Cou-
plings along the legs and rings are ferro- and antiferromagnetic respectively: ferrimag-
netism. (b) Both couplings are antiferromagnetic.
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Figure 7. The same magnetization curve as Fig. 6, for a five leg ladder.

curve [15]. In the right picture both couplings J |, J); along the rings and
the legs are antiferromagnetic (i.e. positive). In the left, the ring coupling is
antiferromagnetic, the leg coupling ferromagnetic; here the plateau extends
to a zero magnetic field, which means that the ground state at B = 0 is not a
singlet, but a state with total spin S = M - N = N/3. Such a phenomenon is
often called “ferrimagnetism”. The five leg ladder is shown in Fig. 7. The two
predicted plateaus at M = 1/10 and M = 3/10 are clearly visible. Switching
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Figure 8. The same magnetization curve as Fig. 6 for a four leg ladder. But: No ferri-
magnetism.

the leg coupling from antiferromagnetic to ferromagnetic, the phenomenon of
ferrimagnetism appears again.

Finally, the four leg ladder is shown in Fig. 8. Two plateaus can be seen
at M =0 and M = 1/4, however the change from antiferromagnetic to ferro-
magnetic leg coupling does not change the magnetization curves substantially.
In particular, there is no ferrimagnetism.

5 Experimental Evidence for Plateaus in Magnetization Curves

The following compounds have been synthesized and investigated by several
groups:

(1) NH4C’U,CZ32
The authors of Ref. [22] found plateaus at M = 1/8,3/8. It is suggested
that this compound forms a two-dimensional structure of coupled zig zag
ladders with two legs [23]. However, two leg zig zag ladders alone cannot
explain the observed plateaus.

(2) CsCuCls:
The authors of Ref. [24] found a plateau at M = 1/6. They consider the
compound as a three-dimensional structure built up from coupled three
leg ladders. This would easily explain the position of the plateau [25], if
the coupling between the three leg ladders does not change the situation.

(3) SrCuy(BOs3)s:
The authors of Ref. [26] found plateaus at M = 1/6,1/8,1/16. They
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suggest [27] that the compound has a two-dimensional coupling structure
4 la Shastry-Sutherland [28].

6 Perspectives

In this report I have restricted the discussion on the existence of magneti-
zation plateaus in isotropic spin 1/2 systems. The considerations presented
here can be extended to higher spin systems. Our next project is to consider
a quite general class of systems with three states at each site. Spin 1 systems
are included as well as lattice systems with spin 1/2 particles carrying charge,
like the t — J model. The t — J model is a Hubbard model for electrons on a
lattice with a constraint preventing two electrons, one with spin up, the other
with spin down, to sit on the same site. The symmetry structure of three-
state systems becomes apparent if we express the couplings between sites x
and y in terms of the 8 generators of the SU(3), the so called Gell-Mann
matrices g, A=1,...,8:

8
H(z,y) =Y Aa(@)Xa(y)Ja. (34)
A=1

The Gell-Mann matrices are just the SU(3) analogue of the Pauli matrices
for SU(2). For the t — J model the coupling parameters J4 are related to the
parameters ¢t and J via

J t J
Jl—JQ—Jg—Z, Jo=Js=Jsg=Jr = — Jg——ﬁ.

The Cartan subalgebra of SU(3) contains two elements. In case of the t — J
model we choose the 3-component of the spin (A3) and the charge (As) of the
state at site z. Total spin and total charge are conserved quantities in the
t—J model. In one-dimensional models the whole line of arguments developed
by Lieb, Schultz, and Mattis [13] in the spin sector can be repeated as well
as in the charge sector of the ¢ — J model. In other words there are soft
modes with momenta ¢(p) = 27p which move with the charge density p as
long as translation invariance and the finiteness of the range of the couplings
is guaranteed. We expect that a breaking of translation invariance by means
of a perturbation with wave number ¢ will produce a plateau at p = ¢/27 in
the curve p = p(u), which describes the dependence of the electronic density

(35)

p (or filling factor) as function of the chemical potential y for the electrons.
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Moreover, the t — J model on a ladder system with [ legs should evolve
a characteristic sequence of plateaus in p(u). Plateaus in the filling factor
p(u) for the two-dimensional Hall system yield indeed the explanation for the
integer and fractional quantum Hall effect. In these systems one can tune the
chemical potential p for the electrons by means of the perpendicular magnetic
field.
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