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Using the Hubbard model we develop a microscopic theory for high-temperature
superconductivity due to the exchange of antiferromagnetic spin fluctuations. We
treat the corresponding pairing mechanism self-consistently within the framework
of the FLuctuation EXchange (FLEX) approximation and study some extensions.
Solving the generalized Eliashberg equations for hole- and electron-doped super-
conductors we obtain both phase diagrams, respectively, and always a d-wave gap
function. Furthermore, for hole-doped cuprates we find three characteristic tem-
perature scales which are in qualitative agreement with the experimental situa-
tion: a pseudogap temperature 7™, below which a gap opens in the density of
states, a mean-field transition temperature 77 for superconductivity below which
we obtain Cooper-pairs without long-range phase coherence ( “pre-formed Cooper-
pairs”), and a critical temperature 7, where these pairs become phase coherent.

1 Introduction

One of the most important and fascinating fields in condensed matter physics
is the appearance of unconventional superconductivity, in particular high-T;
superconductivity, in which the underlying mechanism is still under debate,
even 15 years after the discovery by Bednorz and Miiller [1]. In hole-doped su-
perconductors the highest transition temperature T, (without applying pres-
sure), namely T, = 133 K, has been measured in HgBa,CazCuzQOsgys, fol-
lowed by (to name just a few) BixSroCaCuzOs4s (6 = 0.15 < T, = 95 K),
YBayCuzOr—s (z = 0.93 « T, = 93 K), and Laz_,Sr,CuO4 where for a
doping concentration x = 0.15, a maximum value of T, = 39 K occurs.
While hole-doped superconductors have been studied intensively the anal-
ysis of electron-doped cuprates remains largely unclear. Of course, it is of high
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interest to see whether the behavior of hole-doped and electron-doped cuprate
superconductors can be explained within a unified physical picture using for
example the exchange of antiferromagnetic spin fluctuations as the relevant
pairing mechanism. If Cooper-pairing is controlled by antiferromagnetic spin
fluctuation one expects on general physical grounds that d-wave symmetry
pairing should also occur for electron-doped cuprates. Previous experiments
have not clearly supported this, reporting mainly s-wave pairing [2,3]. Maybe
as a result, so far electron-doped cuprates received much less attention than
hole-doped cuprates. However, recently phase sensitive experiments [4] and
magnetic penetration depth measurements [5,6] exhibited d-wave symmetry
Cooper-pairing also for electron-doped cuprates.

In general, all high-T, superconductors discovered so far contain CuQOaz-
planes and various metallic elements. Hence, they are often called cuprates.
Their crystal structure resembles that of the perovkites. It is now mainly es-
tablished that the relevant physics related to superconductivity occurs in the
CuOgs-planes and that the other layers simply act as charge-reservoirs. Thus,
the coupling in the c-direction provides a three-dimensional superconducting
state but the main pairing interaction acts between carriers within a CuQOs-
plane. As mentioned above, T, for hole-doped cuprates is of the order of 100 K
and thus much larger than in conventional strong-coupling superconductors
like lead (T, = 7.2 K) or niobium (7, = 9.25 K). The phenomenon of high-T,
superconductivity occurs for hole- and electron-doped cuprates in the vicinity
of an antiferromagnetic phase transition. This suggests a purely electronic
or magnetic mechanism in contrast to the conventional picture of electrons
paired through the exchange of phonons. The simplest idea to explain such
high critical temperature might be to introduce a higher cut-off energy w. due
to electronic correlations in the system instead of integrating over an energy
shell of wp (Debye frequency), i.e. T, x w. exp (—1/A), where A denotes the
usual coupling strength for a given symmetry of the gap function. In the BCS
theory [7] X is equal to N(0)V, where N(0) is the density of states (per spin)
at the Fermi level and where V' = const. is the attractive pairing potential in
k-space acting between electrons leading to the superconducting instability
of the normal state. If the relevant energy cut-off w. of the problem is of the
order of electronic degrees of freedom, e.g. w, ~ 0.3 eV ~ 250 K [8], one can
easily obtain a transition temperature of the order of 100 K. However, as we
will discuss below, in a more realistic treatment the relation between T, and
A is, of course, not that simple.

Many researchers believe that in order to find the origin of the high-T,
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superconductivity in the cuprates it is necessary to investigate their normal
state as a function of the doping concentration. Therefore, phenomenological
models like the Marginal-Fermi-Liquid (MFL) [9], the Nested-Fermi-Liquid
(NFL) [10,11] and the Nearly Antiferromagnetic Fermi Liquid (NAFL) the-
ory [12] have been developed in order to understand the unusual non-Fermi
liquid properties in the normal state. We will see later that our FLEX-theory
provides a microscopic justification for these theories. In particular, in the
underdoped regime of high-T,. superconductors, i.e. closer to the antiferro-
magnetic transition than for optimal doping, a number of physical quanti-
ties exhibit quite unusual properties. Examples are the 53Cu spin-lattice
relaxation rate and the inelastic neutron scattering intensity: while in the
overdoped regime 1/T7T increases monotonously as T decreases down to Ty,
one finds in the underdoped case that 1/77T passes through a maximum at
a temperature 7* (for decreasing 7') [13]. These results are fully corrobo-
rated by inelastic neutron scattering data, where in the underdoped regime
Im x(Q,w) at fixed small w (~ 10-15 meV) passes also through a maximum
at T* for decreasing T' [14]. In addition, angle-resolved photoemission exper-
iments [15,16] on underdoped BiySroCaCus Osys indicate a presence of a gap
with dg2_,2-wave symmetry above 7T, also in the charge-excitation-spectrum
even up to room temperature. Recently, several experiments including heat
capacity [17], transport [18], Raman scattering [19], and, in particular, scan-
ning tunneling microscopy [20,21] indicate the existence of a gap in the ex-
citation spectrum of the single-particle properties. This gap in the charge-
response of the system occurs at the same temperature where also the spin
gap opens. Therefore, this gap is then called “(weak) pseudogap”. One be-
lieves both gaps might have the same origin. Due to the d-wave symmetry of
the pseudogap many researchers believe that it is related to precursor effects
of the superconducting state [22,23]. In connection with simple arguments
on the quasi two-dimensional nature of the system (see e.g. the theorem of
Hohenberg [24]) these ideas suggest a non-trivial mechanism of the unusual
behavior of underdoped cuprates. Thus, one of the main theoretical questions
is to explain the origin of this weak pseudogap in the normal state and its
relation to the underlying pairing mechanism.

Another fundamental problem to solve is the theoretical determination of
the superconducting transition temperature 7, itself. A schematic phase dia-
gram for hole-doped superconductors is shown in Fig. 1. At around = = 0.15
one finds the highest T, values. This region is called optimal doping. In
the overdoped region, i.e. x > 0.15, many experimental data suggest that
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Figure 1. Schematic phase diagram of hole-doped cuprates [25]. High-T. superconduc-
tivity occurs in the vicinity of an antiferromagnetic phase transition. The correspond-
ing superconducting order parameter is of d-wave symmetry. In the overdoped region,
i.e. z > 0.15, the systems behaves like a conventional Fermi liquid, whereas in the un-
derdoped regime below the pseudogap temperature T one finds strong antiferromagnetic
(AF) correlations. As we will discuss below, Cooper-pairing can mainly be described by
the exchange of AF spin fluctuations (often denoted as paramagnons) which are present
everywhere in the system. The doping region between Tt and T (shaded region) is due to
local Cooper-pair formation. Below T, these pairs become phase coherent.

the system is a conventional Fermi liquid. On the underdoped side of the
phase diagram in contrast it is believed that below a mean-field transition
temperature T one finds pre-formed Cooper-pairs without long-range phase
coherence. This part of the phase diagram is sometimes called the “strong
pseudogap” region. Below T, these pairs become phase coherent and a Meiss-
ner effect of the bulk material is observed. Furthermore, in the experiment
T. « ng is found only in underdoped superconductors [26]. So far, this has
been mainly described in terms of the Ginzburg-Landau theory [22,23,27-29].
Recently, a microscopic calculation confirmed and clarified the picture [30].
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Figure 2. Results of the energy dispersion € of optimally hole-doped Laj g5Srp.15CuOyg
(dashed line) and of optimally electron-doped Ne1 g5Ceg.15CuO4 (NCCO). The solid curve
refers to our tight-binding calculation choosing ¢ = 138 meV and ¢’ = 0.3. Data (open
dots) are taken from Ref. [31]. The dashed curve corresponds to using ¢t = 250 meV and
t' = 0 and is typical for hole-doped cuprates.

2 Theory of Cooper-Pairing by Antiferromagnetic Spin Fluctua-
tions

2.1 Hubbard Model

In order to obtain a unified theory for both hole-doped and electron-doped
cuprates we use the same one-band Hubbard Hamiltonian taking into account
the different dispersions for the carriers [31]. When doping the electrons,
they occupy copper d-like states of the upper Hubbard band while the holes
refer to oxygen-like p-states yielding different energy dispersion as used in our
calculations. Thus, assuming similar itinerancy of the electrons and holes, the
mapping on an effective one-band model seems to be justified. We consider
U as an effective Coulomb interaction.
On a square lattice the Hamiltonian H reads in second quantization

H=- Z tij (C;c]'g + c;rgcw) + UZ NN — Mtz Nio s (1)
(ij)o i i

where ¢ (c;,) creates (annihilates) an electron on site i with spin o and
t;; is a hopping matrix element. The sum performed over nearest neighbors
is denoted by (ij). Then, t;; is equal to t. U is the intra-orbital (i.e. on-
site) Coulomb repulsion and n;, is equal to cl'-;ci(,. 1 denotes the chemical
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Figure 3. Antisymmetric four-point vertex-function I'(1, 2, 3,4). The solid lines represent
the electron propagators and the dashed line represents the on-site interaction U, respec-
tively.

potential. Therefore, this model can be characterized by two dimensionless
parameters, namely U/t and p.
Using Bloch wave functions we rewrite Eq. (1) as

1U
_ + Toor
H = Z €k CyCko + EN Z ckack’,fo'ckq”q,*‘?ck*q,‘f’ (2)
ko k.k/,q,0
where the one-band electron dispersion in the normal-state e, reads for its
nearest neighbor

ek = —2t[cos kg — cosky + /2] (3)
and for next-nearest neighbor hopping
ex = —2t [cos k, — cosk, — 2t' cosk, cosky + 11/2] , (4)

respectively. Here, N is the number of lattice sites. As mentioned
earlier, the bandstructure in Eq. (3) describes the Fermi surface of
Lag_,Sr,CuQy [32], whereas for B = 0.45, Eq. (4) resembles the Fermi sur-
face of YBayCusOr7_s [33].

In order to discuss the dispersion relation for electron-doped cuprates
in more detail, we show experimental results in Fig. 2 as well as our tight-
binding calculation. We choose the parameters ¢t = 138 meV and ¢’ = 0.3. For
comparison we also show the results with ¢ = 250 meV and ¢’ = 0 which are
often used to describe the hole-doped superconductor Las_,Sr,CuQO4. One
immediately sees the important difference: in the case of NCCO the flat band
is approximately 300 meV below the Fermi level, whereas for the hole-doped
case the flat band lies very close to it. Thus, as discussed later, using the
resulting € in a spin-fluctuation-induced pairing theory we get a smaller T,
for electron-doped cuprates than for the hole-doped ones.
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2.2 Pairing Theory

In contrast to the usual Eliashberg theory of strong-coupling superconduc-
tors [34,35] in which phonons are involved one has to develop a theory for
the exchange of AF spin fluctuations. One possibility is to use the phe-
nomenological ansatz originally introduced by Millis, Monien, and Pines [12]
where the effective pairing interaction V.¢s(q,w) is of the Ornstein-Zernike
form. However, we believe that a self-consistent description is required be-
cause electronic degrees of freedom not only condense into Cooper-pairs, but
also create the pairing interaction. Thus, one has to generalize the Eliashberg
equations on a microscopic basis.

As we have seen earlier, the nearness to a spin-density-wave instability
corresponds to a simple physical picture, in which the spins have short-range
antiferromagnetic order surviving from the long-range order of the insulating
phase. In terms of the Hubbard Hamiltonian the exchange of longitudinal
and transverse spin fluctuations gives rise to an effective electron-electron
interaction (originally introduced by Berk and Schrieffer [36]) that provides a
pairing interaction leading to d-wave superconductivity near half filling. The
effective paramagnon-like interaction then reads

2 X0(q, V) L2 xol@ivm) (5)

3
Vet (@ i) = SU Tt V)
H(q w ) 2 1 _UX(](qa Zy,m) 2 1+UX0(CL ’Ll/m)

In order to solve the generalized Eliashberg equations we will use a
self-consistent theory called FLuctuation-EXchange (FLEX) approxima-
tion [37,38]. Remember that the Hubbard-Hamiltonian can be rewritten
in the form H = Hy + Hj,, where Hy describes the one-particle proper-
ties and Hin, denotes a perturbation [39]. Let us start with introducing
the antisymmetric four-point vertex-function I'(1,2,3,4) (see Fig. 3) [40] as
I'(1,2,3,4) =V (1,2,3,4) — V(1,4,3,2). The antisymmetry corresponds to a
sign change in I after permuting the creation (annihilation) operators 2 (1)
and 4 (3) due to the fact that no distinction can be made between identical
electrons. With the help of I' it is now possible to write down the correspond-
ing self-energies of the conducting holes or electrons:
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Here, ¢ (2F) corresponds to the normal (anomalous) Green’s function
contribution. In order to solve these self-energy equations it is convenient to
introduce the T-matrix [41] which is defined as

o 3

2 3 2 3 2 s >
ET L N AN I RN AL

It 4

Within the Nambu notation one arrives after a straightforward calculation at

. 1 1 X 0(q Z'Vm) 3 XSO(q Z.Vm)
Y6 (k. iw. ) — Z 19 s0\q; 22 )
(K, iwn) BN =, {QU 1+ Uxso(a, ivm) + 2U 1— Uxso(a, iVm)
’yiw,

+U2xe(q, ivm) + U} G(K iw,), (6)
. 1 1 Xs0(d Vi) 3 Xs0(Q; Wim)
Yk, iwy) = —— [—UZ T — U2 ——
oten) = =58 kzu 27 T+ Uxeo(@ivm) 2 1 Uxeoldivm)
U (i) = U | ,). ™)
where iv,, = iw, — 7w;l Note that the term U 2)(07 r on the right-hand

side compensates double counting that occurs in the second order. s
and .o denote the irreducible spin- and charge-susceptibility, respectively,
and are given by xso(q) = — >, [G(k + q)G(k)F(k + ¢)F'(—k)] /BN and
Xeo(d) = — X4 [Glk + q)G(R)F (k + ) F' (—k)] /BN, where = (q itjn) and
k = (k,iwy). The evaluation of the equations mentioned above are performed
on the real axis [38,42]. In order to determine the superconducting transition
temperature T, we solve the linearized gap equation. Below T, we find that
the superconducting gap function has d 2 _,2-wave symmetry. Vertex correc-
tions for the two-particle correlation function which are not included have
been discussed elsewhere [42].
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3 Results and Discussion

Let us start with the normal state of hole-doped cuprates. In Fig. 4(a), we
display the density of states for different doping concentrations x = 1 — n.
We define p(w) = N(w) = >, N(k,w), with the spectral function N(k,w) =
—Im G(k,w +1id)/m. For a doping value of 20 percent we obtain a peak close
to the Fermi energy (w = 0). However, if one gets closer to the spin-density-
wave (AF) instability spectral weight at the same frequency is suppressed,
leading to a dip. The temperature for which this phenomenon occurs defines
the pseudogap temperature 7" = T™. Recently, this has indeed been found
by scanning tunneling microscopy experiments within the normal state of
underdoped BisSroCaCusOg 5. This pseudogap corresponds also to the gap
measured in the charge-excitation-spectrum in the optical conductivity and
is also seen in angle-resolved photoemission (ARPES) experiments by Shen
and others as mentioned earlier (see, for example, Ref. [43]).

Next we want to discuss the superconducting gap function ¢(k,w) shown
in Fig. 4(b) for a given temperature 7' = 48K obtained for an intermediate
coupling strength U/t = 4 and for various doping concentrations . The cor-
responding T, values are T, = 50 K, T, = 63 K, T. = 60 K (from top to
bottom). In order to demonstrate the strong momentum dependence of the
superconducting gap we show only the static part (w = 0) and, for simplicity,
only 1/4 of the first Brillouin zone. Due to feedback-effects from the gap
function on the dynamical spin susceptibility one obtains a solution for the
superconducting order parameter which belongs to the d,»_,» wave represen-
tation but which is not the simple basis function (k) = cos(k;) — cos(k,). In
other words, the appearance of higher harmonics in the gap equation ¢(k,w)
(see in particular x = 0.07) is a result of the self-consistent treatment of the
effective pairing interaction which is dominated, of course, by the dynamical
spin susceptibility x(q,w).

In order to calculate the phase diagram for hole-doped superconductors we
must also calculate the superfluid density ns(z,T)/m self-consistently from
the current-current correlation function and from the f-sum rule: the real part
of the conductivity o1(w), ie. [;° o1(w)dw = me?n/2m, where n is the 3D
electron density and m denotes the effective band mass for the tight-binding
band considered. o(w) is calculated in the normal and superconducting state
using the Kubo formula [44]. Vertex corrections have been neglected. Physi-
cally speaking we are looking for the loss of spectral weight of the Drude peak
at w = 0 that corresponds to excited quasiparticles above the superconduct-
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Figure 4. (a) Momentum averaged density of states p(w) for various doping concentrations.
For large doping p(w) is similar to the uncorrelated case with a large van Hove singularity
above the Fermi energy at w = 0. For small doping a pseudogap appears that is related to
the antiferromagnetic correlations and a precursor of the spin density wave gap of a long-
range ordered system. (b) Superconducting order parameter ¢(k,w = 0) for various doping
concentrations (z = 0.18, z = 0.13, z = 0.07, from top to bottom). All calculations are
performed at T' = 48 K using U = 4¢. Note, the d-wave symmetry of ¢(k,w = 0) and the
appearance of higher harmonics in addition to the simple form ¢ = ¢o[cos(kz) — cos(ky)]
for underdoped systems.

ing condensate for temperatures 7' < 7*. Most importantly, using our results
for ng(x,T), we calculate the doping dependence of the Ginzburg-Landau-
like free-energy change AF = Fg — Fn, where AFcona =~ a(ns/m)Ao(zx) is
the condensation energy due to Cooper-pairing and AFppase =~ h%/2m*ng the
loss in energy due to phase incoherence of the Cooper-pairs. The parameter
a describes the available phase space for Cooper-pairs (normalized per unit
volume) and can be estimated in the strongly overdoped regime. In the BCS-
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Figure 5. Phase diagram for hole-doped high-7¢ superconductors resulting from a spin
fluctuation induced Cooper-pairing including their phase fluctuations. The calculated val-
ues for ng(T" = 0)/m are in good agreement with muon-spin rotation experiments. 7
denotes the temperature below which Cooper-pairs are formed. The dashed curve gives
T. x ns(T = 0,z). Below T* we get a gap structure in the spectral density which is shown
in Fig. 4(a).

limit one finds a ~ 1/400. Aq is the superconducting order parameter at
T = 0. Note, T, and in particular T,  ng follows also from (ns) = 0, where
one averages over the phase fluctuation time.

In Fig. 5 we show the resulting doping dependence of T.(x). We also
display our results for the doping dependence of ns(0)/m, which are in good
agreement with experimental results. The curve T7*P describes many classes
of cuprate material (it is taken from Loram and co-workers [45]). We would
like to emphasize that, for the underdoped cuprates, T, «x ns yields indeed
better agreement with experimental results than T.F obtained from A(xz,T) =
0 which mark the onset of Cooper-pairing within our mean-field theory. For
the temperatures T, < T' < T}, one finds pre-formed Cooper-pairs. For the
overdoped cuprates, i.e. = > 0.15, we get largely BCS-type behavior and
T, ~ T «< A. Hence, our electronic theory yields in fair agreement with
experiment the non-monotonic doping dependence of T.(z). Note, we find
similar results for the doping dependence of T, from determining 7. using
ng(z,T) = 0. Here, one must include the coupling between Cooper-pairs and
their phase fluctuations causing the reduction of T — T for the underdoped
cuprates and T, o ng. In Fig. 5 results are also given for the characteristic
temperature T at which a gap appears in the spectral density. Within
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our FLEX-theory the occurrence of a pseudogap is due to inelastic electron-
electron scattering which leads to a loss of spectral weight at the Fermi level.
These are in qualitatively agreement with experiments. Finally, we calculate
also T, for the underdoped cuprates with ng(7T) and the Kosterlitz-Thouless
theory [46], kpT.(x) = h%ns(T.)/4ma with a = 2/m, and have found similar
T, values.

We also calculate the phase diagram Te(z) and Tn(x) of electron-doped
cuprates. In order to obtain a unified theory for both hole-doped and electron-
doped cuprates it is tempting to use the same Hubbard Hamiltonian taking
of course into account the different dispersions for the carriers. Note, in the
case of electron doping the electrons occupy copper d-like states of the upper
Hubbard band while the holes refer to oxygen-like p-states yielding differ-
ent energy dispersion as used in our calculations. Then, assuming similar
itinerancy of the electrons and holes the mapping on an effective one-band
model seems to be justified. We consider U as an effective Coulomb interac-
tion. We find in comparison to hole-doped superconductors smaller 7, values
and that superconductivity occurs in a narrower doping range as also ob-
served in experiment. Responsible for this are poorer nesting properties of
the Fermi surface and the flat band around (m,0) which lies well below the
Fermi level. The narrow doping range for T, is due to antiferromagnetism up
to z = 0.13 and rapidly decreasing nesting properties for increasing z [47].
In order to understand the behavior of T.(z) in underdoped electron-doped
cuprates we have calculated the Cooper-pair coherence length &y, i.e. the size
of a Cooper-pair, and find similar values for electron-doped and hole-doped
superconductors (from 6 A to 9 A). If the superfluid density n,/n becomes
small (for example due to strong coupling lifetime effects), the distance d
between Cooper pairs increases. If for 0.15 > z > 0.13 the Cooper-pairs do
not overlap significantly, i.e. d/{y > 1, then Cooper-pair phase fluctuations
get important. Thus we expect like for hole-doped superconductors T, o ng.
Below T, we find for all doping concentrations that the gap function has
clearly dg=_,2-wave symmetry. This is in agreement with the reported linear
and quadratic temperature dependence of the in-plane magnetic penetration
depth for low temperatures in the clean and dirty limit, respectively, and
with phase-sensitive measurements [4]. Previous experiments did not clearly
support this and reported mainly s-wave pairing. Maybe as a result of this,
so far electron-doped cuprates received much less attention than hole-doped
cuprates.
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4 Summary

We have used the Hubbard Hamiltonian and the self-consistent FLEX-theory
as a model to calculate some basic properties of the hole-doped and electron-
doped cuprate superconductors. For the hole-doped case we have discussed
the superfluid density ns/m, and the critical temperature T, as a func-
tion of the doping concentration. We found a phase diagram with two
different regions: on the overdoped side a mean-field-like transition and
T. x A(T = 0), and on the underdoped regime T, x ns(T = 0). For tem-
peratures T, < 1" < T} there is a finite superfluid density, but no Meissner
effect. This region may be attributed to pre-formed Cooper-pairs without
long-range phase coherence. Above T one has a third energy scale, namely
T* with a gap below in the spectral density of states (“pseudogap”).

Our unified model for cuprate superconductivity yields for electron-doped
cuprates like for hole-doped ones pure d;2_,2 symmetry pairing in a good
agreement with recent experiments [4]. In contrast to hole-doped super-
conductors we find smaller T, values for electron-doped cuprates due to a
flat dispersion €, around (m,0) well below the Fermi level. Furthermore,
superconductivity occurs only for a narrow doping range 0.18 > = > 0.13,
because of the onset of antiferromagnetism and, on the other side, due
to poorer nesting conditions. We get 2A/kpT,. = 5.3 for x = 0.15 for
the electron-doped cuprates, whereas we obtain much larger values for
the hole-doped ones, namely 2A/kpT, = 10-12. The overall agreement
with experiments on hole- and electron-doped high-T, superconductors is
remarkably good and suggests spin-fluctuation exchange as the dominant
pairing mechanism for superconductivity.
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