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Recent developments in semiclassical methodology for time-dependent properties
of multi-dimensional systems are reviewed. Combining the time evolution opera-
tor and its adjoint into a single forward-backward propagator provides a natural
smoothing of the semiclassical integrand, making the latter suitable for integration
by Monte Carlo methods.

1 Introduction

Computing the time evolution of quantum systems composed of many coupled
degrees of freedom presents serious challenges. Currently, simulations of time-
dependent properties in polyatomic molecules, clusters, or condensed phases
employ a variety of approximations, which are largely built around varia-
tional, quantum classical or semiclassical ideas. While approximate methods
have proven extremely valuable in many situations, their regime of applicabil-
ity is limited. Perhaps more importantly, checking the accuracy of the results
is usually impractical, and thus reliability becomes a significant concern.
Numerical solution of the Schrédinger equation requires storage of the
multi-dimensional wave function, which occupies a volume that grows expo-
nentially with the number of particles. This limitation is circumvented in
the path-integral formulation, where quantum mechanical amplitudes are ex-
pressed as sums over paths [1,2]. To reproduce quantum interference, the
amplitude along each path must be a complex-valued phase. Because of the
rapid oscillations of the latter, numerical evaluation of the real-time path
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integral by means of stochastic methods is plagued by severe numerical insta-
bilities [3,4]. At the same time, explicit summation over all paths is far from
feasible, as their number (if space and time are discretized) increases expo-
nentially with the number of degrees of freedom and the total propagation
time. Recently, exact evaluation of the path integral by virtue of an iterative
algorithm became feasible in cases of a low-dimensional system coupled to a
dissipative bath (for a review see Ref. [5]).

2 Semiclassical Dynamics with Forward-Backward Trajectories

The conventional time-dependent semiclassical approximation can be derived
from the path-integral expression for the coordinate propagator [1,2],

(o[t 1)) = / Dx(t)eiSxO/h (1)

where U is the time evolution operator that propagates from time ¢; to t2. The
last equation is a functional integral over all paths x(¢) with endpoints x(t1) =
x; and x(t3) = X2, and the amplitude contributed by each path is the classical
action in units of Planck’s constant. Taking the limit 7 — 0 and evaluating
the functional integral by the stationary phase method (i.e. restricting the
sum in Eq. (1) to paths that satisfy the Euler-Lagrange equations as well as
quadratic fluctuations around them) leads to the Van Vleck expression for
the semiclassical propagator [6,7]:

(xa|U (2, t1)|x1)sc = > Dy (x2,x7) eSO/ he=inm/2 —(9)

classical paths x(t)

Here the prefactor Dyy is a determinant given by one of the elements of the
stability matrix, and p is the Maslov index which supplies the proper phase
by keeping track of focusing characteristics of the classical trajectories. The
sum in Eq. (2) arises because there are in general multiple solutions to the
boundary value problem specified by the endpoint constraints imposed on the
classical paths. An excellent presentation of the time-dependent semiclassical
approximation and its relation to the path integral can be found in the books
of Kleinert [8] and of Schulman [9].

Equation (2) is formulated in terms of the classical solution(s) to a double-
ended boundary value problem and thus is impractical. In addition, the Van
Vleck prefactor diverges at caustics, and its rapidly growing rate in the vicin-
ity of such points gives rise to numerical instabilities. Miller has shown that
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both of these problems can be overcome by switching to an initial value rep-
resentation [10], provided that one is interested in an observable rather than
the propagator itself. This is achieved by changing the integration variable
associated with the final position of a trajectory to that specifying its initial
momentum and absorbing the Van Vleck determinant and the Jacobian into
a single prefactor. The most favorable representation is obtained in terms
of coherent states, which introduce a natural weight factor for sampling the
initial conditions of classical trajectories. Inserting overcomplete sets of co-
herent states and applying repeatedly the stationary phase approximation,
Herman and Kluk showed [11,12] that the semiclassical propagator can also
be brought into the form

(x2|U (t2,t1)|x1)sc = /dxo/dpo (x2|9(xf.Pf))DrK (X0, P0)

XeiS(xo,Po)]/h@(Xo,P0)|X1> : )

Here x¢, py stand for the final coordinate and momentum of a classical trajec-
tory with initial conditions xg and pg, and the coherent state wave functions
are defined by the usual relation

(el po)) = /et 2 x|~ x0) 7+ (= x0) + oo (x = x0)| (0

The semiclassical propagator is capable of reproducing semiquantitatively all
aspects of quantum mechanics [10,13,14]. In spite of these appealing fea-
tures, rigorous semiclassical theory has found little practical utility in the
past. As in the case of the real time path integral, evaluation of ensemble-
averaged observables by means of the semiclassical propagator is plagued by
the problem of severe phase cancellation, which now occurs due to interfering
classical trajectories. Persistent efforts in the last few years have led to some
methodological advances, which have enabled calculations in several models
and small molecular systems [11,12,15-34].

Systems of many atoms are usually characterized in terms of ensemble-
averaged quantities, such as correlation functions or the reduced density ma-
trix. In these, the dynamical quantity of interest (usually an operator that
depends on a few degrees of freedom of direct interest, the “system”), propa-
gated to the desired time, is traced over all unprobed coordinates (those of the
“bath”) subject to a distribution function that characterizes the particular
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ensemble. Such expressions have the general structure
Tr (pU T Ub;}:k(u 0) ce Ufor(t= 0)) ’ (5)

where pg is the equilibrium density matrix and Uy, Upack are time evo-
lution operators corresponding to the dynamics generated by the same or
two distinct Hamiltonians, that may also be explicitly time-dependent. This
structure can be exploited to reduce the severity of the sign problem.

The conventional semiclassical procedure for evaluating Eq. (5) is to
approximate each of the two propagators by the semiclassical (Van Vleck
or coherent state) expression and attempt to perform the resulting multi-
dimensional integrals by Monte Carlo methods. In the coordinate represen-
tation, this procedure produces an expression of the form

/ dxq / dx; / dxye— i Svaek (et b giSton(xax) /R (6)

According to this, one integrates trajectories from (xg,0) to (x¢,t) and also
from (x¢,t) to (xf,0). With the exception of very short times, each of the
action integrals in the above equation is large relative to A and thus the
integrand is highly oscillatory.

Imagine, however, that one finds a way to combine the two time evolution
operators in Eq. (5) into a single propagator. Various ways of doing this are
discussed in the subsections that follow, but notice that the presence of the
operator B in the correlation function prevents the combined exponentials
from producing the identity (and thus eliminating all dynamics). Apply-
ing the semiclassical approximation to the new forward-backward propagator
would lead to an expression with a single semiclassical amplitude [25]:

/dxo/dxf...eis(x(]?xf)/h... . (7)

Here the classical trajectories run from (xg,0) to (x;,¢) and subsequently
backwards in time to (xy, 0), and S is the combined forward-backward action.

The pairing of the two evolution operators has accomplished two tasks.
First, the midpoint integral has been eliminated. In fact, Eq. (7) can be
viewed as the result of evaluating the midpoint integral of Eq. (6) by the
stationary phase method. Second, and more important, the action entering
Eq. (7) is the net result of forward and backward propagation. If the trajec-
tory simply reversed its steps during the backward part, the overall action
would be equal to zero. As will become clear in the following, the presence of
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an operator between the two propagators alters somewhat the course of the
backward trajectory; nevertheless, the net forward-backward action generally
remains small. The significance of this fact is obvious: the rapid oscilla-
tions of the integrand have been eliminated and Monte Carlo methods should
be applicable. Phrased differently, the advantage of forward-backward semi-
classical dynamics (FBSD) is that the phase cancellation which plagues the
multi-dimensional integrals of Eq. (6) is shifted naturally to a cancellation
between forward and backward actions.

The smoothing achieved by combining the forward and backward prop-
agation steps are illustrated in Figs. 1 and 2 which show the semiclassical
integrand as a function of the trajectory initial conditions for a harmonic
potential after (a) propagation in the forward direction only (Fig. 1) and
(b) combined forward-backward propagation (Fig. 2). In multi-dimensional
space, the oscillatory character of the integrand depicted in Fig. 1 is respon-
sible for the failure of Monte Carlo methods. On the other hand, the smooth
forward-backward integrand of Fig. 2 is perfectly suitable for stochastic sam-
pling.

The numerical advantages achieved by combining the forward and back-
ward evolution operators into a single semiclassical step are not without con-
sequences. Consider two classical trajectories satisfying the boundary condi-
tions of the forward and backward propagators in Eq. (6). As no constraint is
imposed on these trajectories, they may join with different slopes (and thus
different momenta) at the midpoint x;. Now imagine evaluating the mid-
point integral by the stationary phase method in order to arrive at the FBSD
expression, Eq. (7). The stationary phase condition is [26]

asfor (X07 xt) _ 8Sbaa:k (Xtv Xf)

for back
Ox4 O Pt Pt ’ ()

X0 Xf

where p{F is the final momentum of the forward trajectory and pPack is
the initial momentum of the backward trajectory. Thus, the forward and
backward trajectories in FBSD are no longer independent but are constrained
to maintain momentum continuity at all times. This restriction can lead to
loss of interference.

It is thus apparent that the FBSD approach should be implemented with
caution. Depending on the nature of the problem at hand and the desired
degree of accuracy it may be advantageous to treat all of just some of the
degrees of freedom by FBSD. Various situations that emerge are described
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Figure 1. The real part of the semiclassical propagator as a function of initial position
and momentum for a one-dimensional harmonic oscillator driven by a time-dependent force
arising from its coupling to a quantum system for the action arising from a path in the
conventional forward time direction. The total propagation time is wt = 1.

below.

Perhaps the most straightforward and unambiguous use of FBSD is in
the evaluation of influence functionals [35] in the context of the path-integral
representation of time-dependent quantum mechanics. Consider, for exam-
ple, the reduced density matrix for a system described by the Hamiltonian
Hy(r,pr) in contact with an n-dimensional environment of coordinates x, p
whose force field and interaction with the solute are given by the Hamilto-
nian Hy(x,p,r). Using the path-integral representation for each of the two
propagators, the reduced density matrix can be brought in the form

" |p)|r'y = /dro+ /drg /Dr+/Dr_eiS°[rﬂ/he_"s‘)[rf]/hF[r“',7“_], (9)
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Figure 2. Same as Fig. 1, but for combined action along the forward-backward time
contour for an arbitrary choice of distinct forward and backward paths.

where
F[’F+, Tﬁ] =Ty (Ufor(t’ O)pOUl):mlck(t7 0)) (10)

is the influence functional that contains all the effects of the environment on
the dynamics of the particle of interest. Here U (t,0) and Upack(t,0) are
operators that propagate the bath in the presence of a potential that is time-
dependent by virtue of the time-parameterization of the system coordinate:

Hfor(t/) = Hb(xapar+(t/))a Hback(t/) - Hb(X,p,T_(t/)). (11)

Noting that the trace operation allows a cyclic rearrangement of the two
arguments brings the influence functional in a form suitable for FBSD. Its
coherent state representation becomes [25]

F[T+7’I"7] :/dXO/dPODHK(XO,pO)€iS(x0’p0)]/h
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x(g(x0, Po)|polg(xs, Py)) - (12)

Consider now the evaluation of general correlation functions of the type
C(t) = Tr (perth/hBe*th/h) : (13)

where A and B are general operators. In this case, the forward-backward
structure of the integrand is disrupted by the presence of these operators and
formulating a semiclassical forward-backward scheme is neither straightfor-
ward nor unique.

The most straightforward treatments involve bringing the operator B into
an exponential form and applying FBSD to the resulting evolution operator.
Miller and coworkers have proposed the use of the Weyl identity,

BW(X7 p) — /dp//dxlprB(xl,p/)eip’.x/hefip'x’/h’ (14)

where W), g is the Wigner transform [36] of the operator poB. The correlation
function is brought in the form [29,30]

/dXO/de/dX /dp WpoA XOaPOaxfapf)B(Xtapt)
X Dyy (%0, Po, Xy, py )¢S opox':p)/h (15)

where the phase space variables with initial conditions xq, pp and the action
follow the classical equations of motion forward and backward in time to the
final values x¢, pf, changing discontinuously at the time ¢ by the amounts

x=x', ép=p’. (16)

A very practical scheme arises by using a derivative identity to convert the
operators to an exponential form and evaluating the resulting expression by
FBSD. The correlation function is written as

C(t) = —iiﬂ (perth/hemBe—th/h)

5 (17)

n=0
By applying the semiclassical approximation to the product of exponentials

in this expression and manipulating the resulting equation, Shao and Makri
have shown in Refs. [33,34] that Eq. (17) leads to the expression

P )
C(t) = —z’fr"% /dxo/dpo exp (%S(xo,p0)>



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Forward-Backward Semiclassical Dynamics 23

x(g(x0, Po)|poAlg(xs,Ps))|u=0, (18)

where the coordinates and action increment at time ¢ by the infinitesimal
amounts to

M@B(Xt,pt) 1 uaB<Xtapt)

Sy P

8S = huB(x¢). (19)
Note that Eq. (18) contains no prefactor, and that the momentum jump in
this expression is exactly one half of that dictated by Hamilton’s equations for
the effective potential governing the dynamics. This way, the semiclassical
prefactor is accounted for by the combined contribution of the action and
initial density. The absence of a prefactor from Eq. (18) leads to nearly linear
scaling of the required computer time with the number of degrees of freedom.
Miller and coworkers have shown that Eq. (18) can also be expressed in a
form involving only forward propagation.

Equation (18) is the rigorous stationary phase limit of Eq. (17). However,
because the stationary phase approximation with respect to the midpoint in-
tegral is applied here to all degrees of freedom, it is clear that the interference
arising from distinct forward and backward trajectories will be missed, and
thus Eq. (18) is not as accurate as semiclassical expressions employing two
separate propagators. In fact, the overall behavior of Eq. (18) is similar to
that of the Wigner approximation [37,38]

C(t) = h_n/dxo/dengA(XOaPO)B(Xtapt)a (20)

which involves a quasiclassical trajectory average with the Wigner function
replacing the classical density. Here W is the Wigner transform of the oper-
ator pg. Sun and Miller have shown that the Wigner quasiclassical method
can also be obtained from the full semiclassical expression by linearizing the
action difference of the forward and backward trajectories [21].

As a test, Shao and Makri applied Eq. (18) to a model of an initially
displaced quartic oscillator coupled to a bath of 30 harmonic oscillators [33]
and compared the resulting average position to exact solutions [39]. As seen
in Fig. 3, for zero coupling the prefactor-free expression reproduces the first
several oscillations of the average position semiquantitatively but fails to cap-
ture the rephasing of the wavepacket. When a small amount of dissipation
is included, the average position decays irreversibly, and both prefactor-free
expressions follow closely the exact results.
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Figure 3. Average position for a one-dimensional quartic oscillator coupled to a bath
of 30 harmonic degrees of freedom at zero temperature. Solid line: exact results. Solid
circles and hollow squares: FBSD without prefactor, Eq. (18). Hollow triangles: linearized
(Wigner) approximation; left: no system-bath coupling, right: weak and moderate system-
bath coupling.

3 Discussion

Shao and Makri used the derivative version of the FBSD formulation summa-
rized in equations (18) and (19) and calculated correlation functions of various
normal modes in clusters of two and four water molecules at zero tempera-
ture. The largest of these clusters has 30 active degrees of freedom and the
calculation involves a 60-dimensional integral which was evaluated with only
2,500 sampling points per integration variable, i.e. a total of 150,000 trajec-
tories. Representative results are shown in Fig. 4 for the water tetramer [34].
The large imaginary parts of these correlation functions is of purely quantum
mechanical origin. It is concluded that the prefactor-free FBSD is capable
of describing the vibrational dynamics of sizable systems with numerical ef-
fort that is comparable to that required in conventional molecular dynamics,
while capturing important quantum mechanical effects.

To improve the accuracy of FBSD, one should express the correlation func-
tion in a form that includes some explicit interference between forward and
backward trajectories. One way to do this is to apply the stationary phase
technique to the coordinates of the bath, but evaluate the midpoint integral
with respect to the system coordinate numerically [27]. Another possibil-
ity is to start from the full semiclassical expression but introduce damping
factors that bias sampling around stationary phase paths, with adjustable
weights [40]. Both of these approaches lead to improved results where impor-
tant quantum features can be captured accurately, but at considerably higher
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Figure 4.

Real and imaginary parts of the correlation function for the acceptor OH stretch-

ing vibrations in the water tetramer as obtained by the derivative version of the FBSD
procedure.

computational cost.

In summary, the FBSD approach and its numerous variants have tremen-
dously enhanced the feasibility of semiclassical calculations in chemical sys-
tems. However, the most practical of these schemes are accurate only for short
times and/or when dephasing effects due to multi-dimensional environments
quench quantum coherence fairly rapidly. The more accurate versions of
FBSD remain computationally expensive and even prohibitive in some cases.
Devising semiclassical approximations that are capable of capturing quantum
interference effects, while being routinely applicable to large systems, remains
the focus of intense efforts in the dynamics community.
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