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Phase ordering dynamics of the (2 + 1)- and (3 + 1)-dimensional ¢*-theory with
Hamiltonian equations of motion is investigated numerically. Dynamic scaling is
confirmed. The dynamic exponent z is different from that of the Ising model with
dynamics of model A, while the exponent ) is the same.

1 Introduction

It is believed that macroscopic properties of many particle systems could, in
principle, be described by microscopic deterministic equations of motion (e.g.
Newton, Hamiltonian, and Heisenberg equations), if all interactions, bound-
ary conditions, and initial states could be taken into account. In practice,
however, it is very difficult to solve these equations, except for some sim-
ple cases. Therefore, statistical mechanics was developed to deal effectively
with such systems. Usually, ensemble theories are appropriate for equilibrium
states, but they are inadequate for non-equilibrium states, where a general
theory does not exist. In many cases, stochastic dynamics, e.g. following from
Langevin-type equations of motion or Monte Carlo dynamics, are approxi-
mate theories. Anyway, it is an open question whether microscopic equations
of motion could really produce the results of statistical mechanics, or vice
versa (see Refs. [1-5]).

With the development of computers, it becomes gradually more and more
possible to solve microscopic deterministic equations numerically. This at-
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tracts scientists of different fields. The study of microscopic fundamental dy-
namics aims on the one hand to test statistical mechanics, and on the other
hand to explore new physics. For example, if a system is isolated, there is only
internal interaction, and periodic boundary conditions can be adopted. So,
computations are greatly simplified. To achieve ergodicity, the system should
start from random initial states. Recently, such effort has been made for the
O(N) vector model and XY model [5-7]. The results support that determin-
istic Hamiltonian equations correctly describe second-order phase transitions.
The estimated static critical exponents are consistent with those calculated
from canonical ensembles (e.g. see the recent text book [8]). More interest-
ingly, the macroscopic short-time (non-equilibrium) dynamic behavior of the
(2+1)-dimensional ¢*-theory at criticality has also been investigated and dy-
namic scaling is found [9,10]. The results indicate that Hamiltonian dynamics
in two dimensions with random initial states is in the same universality class
of Monte Carlo dynamics of model A.

In a similar spirit, phase ordering dynamics of the (2 + 1)-dimensional
¢*-theory with Hamiltonian equations of motion has been investigated in
Ref. [11] Assuming random initial states, there is a minimum energy density
which is above the real minimum energy density of the system. Starting
from this minimum energy density (note that energy is conserved), which
is well below the critical energy density, phase ordering occurs. Dynamic
scaling behavior is found. The dynamic exponent z is different from that of
model A dynamics, but the exponent \ governing the power-law decay of the
autocorrelation looks the same. It is somewhat interesting that the scaling
function of the equal-time spatial correlation function is the same as that of
the Ising model with model A dynamics. All results are independent of the
parameters in the system.

The purpose of this article is twofold: Firstly, we generalize the compu-
tations to (3 4+ 1) dimensions, which is important because our realistic world
is in (34 1) dimensions. Furthermore, in phase ordering of model A dynam-
ics, the dynamic exponent z is dimension-independent but the exponent A is
dimension-dependent. It is interesting to see whether this property is kept
in Hamiltonian dynamics. Attention will also be put on whether the scaling
function of the equal-time spatial correlation function in three dimensions is
the same as the one of the Ising model with model A dynamics. Secondly,
to achieve more confidence on our conclusions, we will reexamine the results
for (2 + 1) dimensions obtained in Ref. [11], using somewhat different, more
careful approaches. Since the computations in (3 4+ 1) dimensions are very
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time consuming, more accurate data are obtained in (2 + 1) dimensions.

2 Phase Ordering Dynamics

In the following, we outline phase ordering dynamics with Hamiltonian equa-
tions of motion. For a recent review of general ordering dynamics, readers
are referred to Ref. [12].

2.1 The Model

For an isolated system, the Hamiltonian of the (d + 1)-dimensional ¢*-theory
on a square or cubic lattice is

1 1 1 1
H=3"[5m8 +5 3 (G — 00)? = 5m203 + 3100} 1)
i I ’
with m; = ¢l It leads to the equations of motion
. 1
Gi = (birp+ bipy —20i) +m; — 3!9@3 : (2)
m

Here p represents spatial directions and energy is conserved in these equa-
tions. The solutions are supposed to generate a microcanonical ensemble.
The temperature could be defined as the averaged kinetic energy. For the
non-equilibrium dynamic system, however, total energy is a more convenient
controlling parameter, since it is conserved and can be taken as an input from
initial states. For given parameters m? and g, there exists a critical energy
density €., separating the ordered phase (below €.) and the disordered phase
(above €.). The phase transition is of second order.

We should emphasize that a Langevin equation at zero temperature is
also “deterministic” in the sense that there is no noise. But it is essentially
different from the Hamiltonian equations (2). The former describes relaxation
towards equilibrium at zero temperature for a non-isolated system, but the
latter contains full physics at all temperatures for an isolated system.

The order parameter of the ¢*-theory is the magnetization. The time-
dependent magnetization M = M®(t) and its second moment M) are
defined as

k
MB) () = ﬁqZ@(w] > k=12 (3)
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L is the lattice size and d is the spatial dimension. Here, the average is over
initial configurations, which means that it is a real sample average and differ-
ent from the time average in equilibrium. Following ordering dynamics with
stochastic equations [12], we consider the dynamic process that the system,
initially in a disordered state but with an energy density well below ., is
suddenly released to evolve according to Eq. (2). For simplicity, we set the
initial kinetic energy to zero, i.e. ¢;(0) = 0. To generate a random initial
configuration {¢;(0)}, we first fix the magnitude |¢;(0)| = ¢, then randomly
give the sign to ¢;(0) with the restriction of a fixed magnetization in units
of ¢, and finally the constant ¢ is determined by the given energy. In case of
stochastic dynamics, scaling behavior of phase ordering is dominated by the
fixed point (T7,Tr) = (00,0) with T7 being the initial temperature and Tr
being the temperature after quenching [12]. In Hamiltonian dynamics, the
energy density cannot be taken to the real minimum e,,;, = —3m*/2g since
the system does not move. Actually, for the initial states described above,
the energy is given by

V=3 (@ gmet + oot @

For the case of d < m?/2 phase ordering occurs when the initial magnetization
is set to zero for an energy density well below the critical point €., due to the
competition of two ordered states [11]. The scaling behavior is dominated by
the minimum energy density vmin = Vinin/ L%, which is a kind of fixed point.
Above vy, there are extra corrections to scaling. From now, we redefine the
energy density emin as zero. Then the fixed point is €9 = Vmin — €min- In this
article, we consider only the energy density at exactly the fixed point .

2.2 Dynamic Scaling Behavior

Let us first consider the case of the initial magnetization mo = 0. An impor-
tant observable is the equal-time correlation function

) = 1 <Z ¢i<t>¢i+r<t>> . o)

The scaling hypothesis is that, at the late stage of the time evolution, C(r, )
obeys the scaling form

C(r,t) = f(r/t")?) (6)
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where 2z is the so-called dynamic exponent. Here, “late” is meant in a micro-
scopic sense. In other words, when the domain size (~ t/#) is big enough in
units of the lattice spacing, scaling behavior emerges. At finite ¢, of course,
there may be corrections to scaling which are generally not universal. They
may induce difficulties for observing scaling behavior and uncertainties in the
determination of the critical exponents.

Simple understanding of the scaling behavior of C(r,t) can be achieved
from the second moment of the magnetization. Integrating over r in Eq. (6),
we obtain the power law behavior

M (t) ~td/% (7)

Another interesting observable is the auto-correlation function

1
A(t) = Td <Z ¢i(0)¢z‘(t)> . (8)
The scaling hypothesis leads to the power law
A(t) ~ 7, (9)

which implies that ordering dynamics is in some sense “critical”. Here A is
another independent exponent.

For the discussions above, the initial magnetization mg is set to zero. If
my is non-zero, the system reaches a unique ordered state within a finite time.
If myg is infinitesimally small, however, the time for reaching the ordered state
is also infinite and scaling behavior can still be expected, at least at relatively
early times (in a macroscopic sense). In this case, an interesting observable
is the magnetization itself. It increases by a power law

M) ~t? 0= (d—N\)/z (10)

The exponent § can be written as xo/z, with zg being the scaling dimension
of mg. This power-law behavior has been investigated in critical dynam-
ics [13,14]. The interesting point here is that 6 is related to the exponent
A which governs the power-law decay of the auto-correlation. By combining
measurements of 8 and A\, one can also estimate the dynamic exponent z.
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Figure 1. (a) C(r,t) in two dimensions obtained with L = 256 and At = 0.01 is plotted
with solid lines for ¢t = 20, 40, 80, 160, 320, 640, and 1280 (from left). Circles fitted to
the curve at the time ¢ indicate the data at the time 2t with r being rescaled by a factor
2-1/z, C(r,t) obtained with At = 0.02 is also plotted with dashed lines. These overlap
almost completely with the solid lines. (b) A(t) obtained with At = 0.01 (the solid line)
on a log-log scale. The curve for At = 0.02 overlaps completely with that for At = 0.01.

3 Numerical Results

To solve the equations of motion (2) numerically, we discretize ¢; by [¢:(t +
At) + ¢i(t — At) — 2¢;(t)]/(At)%. Starting from an initial configuration, we
update the equations of motion up to a certain maximum time tyax. Then
we repeat the procedure with other initial configurations. Reasonable results
in two dimensions are obtained mainly with At = 0.05 up to tpa = 640
and a lattice size L = 521 [11]. 200 samples of initial configurations are
used for averaging. For three dimensions, we also perform the computations
with At = 0.05 up to tmax = 640 but with a lattice size L = 125. Here, 50
samples are taken for averaging. We have also carried out some computations
with other At’s and lattice sizes to confirm the results. At the time fyay,
the equal-time correlation function C(r,t) decays to nearly zero at r ~ 45
and this indicates that the finite-size effect with L = 128 is already small.
Furthermore, in order to gain more confidence in our conclusions, especially
whether our tp.x has really reached the scaling regime, we perform more
accurate computations in two dimensions (compared with those in Ref. [11])
with a lattice size L = 256 and At = 0.02, 0.01 up to tmax = 1280. The
number of samples for averaging is 600. In this article, somewhat different
and more careful approaches will be adopted.
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Figure 2. a) C(r,t) in three dimensions obtained with L = 128 and At = 0.05 is plotted
with solid lines for ¢ = 20, 40, 80, 160, 320, and 640 (from left). Circles fitted to the curve
at the time t display the data at the time 2¢ with r being rescaled by a factor 2-1/2 The
dashed line represents the scaling function in two dimensions. (b) A(t) and M(2)(¢) on a
log-log scale.

In Fig. 1(a), the equal-time correlation function C(r,t) in two dimensions
is displayed. Solid lines are obtained with At = 0.01 and, from left to right,
the time t is 20, 40, 80, 160, 320, 640, and 1280. Data for At = 0.02 are
also plotted with dashed lines, but they almost completely overlap with the
solid lines. For the curve of ¢ = 1280, C'(r,t) decays to nearly zero at r ~ 50.
Therefore, we conclude that the finite-size effect for the lattice size L = 256
should already be negligibly small. To confirm this, we have also compared
the data with those in Ref. [11]. Our data also show that the finite At effect
for At = 0.05 is negligible, too. According to the scaling form (6), from data
collapse of C(r,t) at different ¢’s, one can estimate the dynamic exponent z.
As observed in Ref. [11], the effective dynamic exponent z(t) shows a small
dependence on the time ¢. To explore this behavior and extract confidently
the value of z, we perform scaling collapse of C(r,t) with the time ¢ and 2t.
In Fig. 1(a), circles fitted to a solid line of the time ¢ are the data of the time
2t with r being rescaled by a factor 2=/%, i.e. C(r,t) = C(r2'/%,2t). The
dynamic exponent z(t) is determined by the best fitting of the circles to the
corresponding solid line. We see clearly that the data collapse nicely.

Figure 2(a) shows C(r,t) in three dimensions. Scaling collapse is also
observed, even though for larger r it is not as good as in two dimensions.
This can be neither a finite-size effect nor a finite At effect, since it exists
also for small ¢’s. To see the trend of z(t) as the time t evolves, we plot in
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Fig. 3(a) the effective exponent z(t) against 1/¢. For two dimensions, z(t)
starting from a value around 3 gradually decreases and reaches 2.63(2) at
t = 640 (i.e. obtained with data of C(r,t) at the time ¢t = 640 and 2t =
1280). Assuming that the behavior of z(t) will not change essentially after
t = 1280, the extrapolated value of z to the infinite time ¢ is estimated to
be 2.6(1). Interestingly, for three dimensions the exponent z(t) starting from
a value around 2.5 increases slowly, but stabilizes at 2.7 after ¢ = 80. A
good estimate of z is z = 2.7(1). Within statistical errors, the values of the
dynamic exponent z in two and three dimensions coincide with each other,
thus indicating that the dynamic exponent z is dimension-independent. This
can also be seen from the joining of two different curves at relatively large
times in Fig. 3(a).

In the case of the Ising model with Monte Carlo dynamics, the effective
exponent z(t) in two dimensions converges to z = 2 rather fast (see Ref. [15]),
but it is relatively slow in three dimensions due to corrections to scaling. It
might be somewhat general that phase ordering dynamics in three dimensions
is somewhat more complicated than in two dimensions.

An interesting fact is that even though the dynamic exponent z of the ¢*-
theory in two dimensions with Hamiltonian dynamics is different from that
of the Ising model with Monte Carlo dynamics, the scaling function f(z) in
Eq. (6) is the same [11]. However, this is probably only by chance since it
is not the case in three dimensions. The scaling function f(z) of the three-
dimensional ¢*-theory with Hamiltonian dynamics is different not only from
that of the two-dimensional but also from that of the three-dimensional Ising
model with Monte Carlo dynamics. The dashed line in Fig. 2(a) shows the
f(x) of the two-dimensional ¢*-theory. In general, Hamiltonian dynamics
for isolated systems differs indeed from stochastic dynamics for non-isolated
systems.

For a simple understanding of the correlation function C(r,t), one can
measure the time-dependent second moment M) (t). The scaling form re-
sults in a power-law behavior for M (?)(t) and from the slope in log-log scale
one can estimate the corresponding exponent. Such an approach is rather
typical and useful in critical dynamics [14]. It can also be applied in ordering
dynamics, but this is less efficient. In critical dynamics, in the scaling col-
lapse of C(r,t), one has to determine two exponents, the dynamic exponent
z and the static exponent 23/v. Therefore it is efficient to read out directly
the exponent (d — 23/v)/z from the slope of M) (t) in log-log scale [14].
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Figure 3. (a) The effective dynamic exponent z(t) measured from scaling collapse of C(r, t)
with the times ¢t and 2¢. (b) Taking a = A/z, A(t)t® tends to a constant.

However, in ordering dynamics the “static” exponent 2(3/v = 0 and the scal-
ing collapse of C(r,t) is only a one parameter fit. Measurements of M3 (t)
do not show any advantage since it is not self-averaged and there is a larger
fluctuation for bigger lattices (see the data in Ref. [11]). Anyway, in Fig. 2(b)
we have plotted the second moment in log-log scale for the three-dimensional
¢*-theory. The power-law behavior is seen after t ~ 80 and this is consis-
tent with Fig. 3(a). According to Eq. (7), the resulting dynamic exponent is
z = 2.5(2), consistent within errors with z = 2.7(1) measured from C(r, t).
Another interesting exponent in ordering dynamics is A governing the
power-law decay of the auto-correlation A(t) in Eq. (9). The measurements
of the auto-correlation in ordering dynamics is easier than in critical dynamics
since the fluctuation is much smaller. The results for the ¢*-theory in two
and three dimensions are shown in Fig. 1(b) and 2(b). In order to see how the
effective exponent \/z depends on the time ¢, we have measured the slope
of the curves in the time interval [¢,2t]. The results are given in Table 1.
For both, two and three dimensions, the exponent A/z becomes stable after
t = 160. The final values are A\/z = 0.466(3) and 0.618(4) for two and
three dimensions, respectively. To show that our estimates of A/z are indeed
reasonable, we plot A(¢)t* in Fig. 3(b) as a function of the time ¢. A correct
value @ = \/z should result in a constant for A(t)t%, at least for larger times.
Such a behavior is nicely seen from the lower solid line and the dashed line
for two and three dimensions. To confirm that the value A/z = 0.466(3) for
two dimensions is really different from \/z = 0.625 for stochastic dynamics,
the corresponding curve with a = 0.625 is also displayed there (the upper
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Table 1. The exponent A/z measured in the time interval [¢, 2¢] from the auto-correlations
in two and three dimensions.

t 40 80 160 320 640
2D 0.508(1) 0.492(1) 0.469(7) 0.461(6) 0.463(6)
3D 0.633(4) 0.609(1) 0.617(3) 0.619(7)

solid line). Obviously, it does not tend to a constant.

From measurements of z (from C(r,t)) and \/z, we estimate the exponent
A = 1.21(5) and 1.67(6) for two and three dimensions, respectively. For
stochastic dynamics, the theoretical prediction for two dimensions is A =
1.25 [12,16], but in Monte Carlo simulations it is usually slightly smaller [15].
Extrapolation is needed to obtain a value very close to 1.25. There is always
some uncertainty in extrapolation. Therefore, we tend to claim that A of the
¢*-theory in two dimensions with Hamiltonian dynamics is the same as that
of stochastic dynamics. In three dimensions, our A = 1.67(6) agrees very well
with the “best” theoretical prediction 1.67 for stochastic dynamics [12,17].
Numerical measurements of A for stochastic dynamics in three dimensions
look somewhat problematic and the results fluctuate around the theoretical
values.

To complete our investigation, we have also simulated the initial increase
of the magnetization in Eq. (10). Since the exponent 6 is relatively big,
compared with that in critical dynamics [11,14], we need to prepare a very
small initial magnetization mg.

In Fig. 4, the magnetization in three dimensions is plotted on a log-log
scale for mgy = 0.00123, 0.00245, and 0.00491 (from below), respectively. The
power-law behavior is observed after ¢ ~ 50. From the slope, we measure the
exponent . Within statistical errors, we cannot find any m dependence of 6.
The value of 6 is estimated to be 0.55(2). With 6 in hand, combining A\/z =
0.618(4), we obtain another value for the dynamic exponent, z = 2.6(1).

In Table 2, all exponents measured for the ¢*-theory with Hamiltonian dy-
namics are summarized. Results for two dimensions are taken from Ref. [11],
but A\/z, A and z from C(r,t) are slightly modified. Different measurements
in two and three dimensions suggest that z = 2.6(1) is a good estimate for the
dynamic exponent. Since the critical exponent 6 in phase ordering dynamics
is different from the case of critical dynamics [14], it has not yet got enough
attention, even though it has been mentioned in Ref. [12]. One reason might
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Figure 4. The magnetization in three dimensions on a log-log scale. The lattice size is
L =128. From below, mg = 0.00123, 0.00245, and 0.00491.

be that, in ordering dynamics!, increasing of the magnetization is expected if
a non-zero initial value mg is set, but in critical dynamics, this is anomalous.
Anyway, we think @ is interesting since it gives another independent estimate
for the dynamic exponent z or A.

4 Conclusions

We have numerically solved the Hamiltonian equations of motion for the two-
and three-dimensional ¢*-theory with random initial states. Phase ordering
dynamics is carefully investigated. Scaling behavior is confirmed. The dy-
namic exponent z is dimension-independent. Different measurements yield
a value z = 2.6(1) which differs from z = 2 for stochastic dynamics of
model A. The scaling function for the equal-time spatial correlation func-
tion is dimension-dependent, and in general it is also different from that of
stochastic dynamics of model A (this is the same probably only by chance in
two dimensions). However, the exponent A of Hamiltonian dynamics is the
same as that of stochastic dynamics of model A.
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Table 2. Exponents of the ¢*-theory with Hamiltonian dynamics. To calculate ), z mea-
sured from C(r,t) is taken as input.

9 Nz | d/Nz+0) Clrit) M® A
2D | 0.31(1) 0.466(3) 2.6(1) 2.6(1) 2.6(1) | 1.21(5)
3D | 0.55(2) 0.618(4) 2.6(1) 2.7(1)  2.5(2) | 1.67(6)
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