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The path-integral method is particularly useful for studying global questions
of topology. We discuss the influence of the Aharonov-Bohm effect in four-
dimensional spherical systems via the path integral. As a realization, we give
the exact Green’s function of the relativistic A-B-C system. The procedure can be
generalized to any-dimensional systems.

1 Introduction

It is an honor and a pleasure to present an article at this celebration of Profes-
sor Dr. Hagen Kleinert’s birthday. During the past several years, I have spent
some time studying relativistic systems using path integrals. It was Kleinert
who first introduced the space-time transformation in the path integral [2]
to compute the hydrogen atom [2 4] leading to a vigorous development in
this field. We want to show the consequences of the topological effects of
the Aharonov-Bohm (A-B) effect in four-dimensional spherically symmetric
systems. We study such systems, since several physical systems turn in mo-
mentum space into a dynamical problem of a three-dimensional surface in
four dimensions, such as the hydrogen atom whose dynamics in momentum
space takes place on a three-dimensional sphere in four-dimensional space [4].
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2 The General Influence of the A-B Effect in Spherical Symmetric
Systems

The path-integral representation for the Green’s function of a relativistic par-
ticle moving in external electromagnetic fields in the four-dimensional space
is given by [3,5,6]:

Gloxanxai B) = oo [ d5 [ D)@ s3] [ D)
x exp {—Ap [x, %] /A} p(0). 1)

where the Euclidean action reads

Ab m
Ap [x, %] =/Aa d\ 2{)@)5;2 (\) —i(e/c)A(x) - %(\)
o EVE ’%1 , )

with S defined as
Ap
S= / Dp(M). (3)
>\a

Here p(A) is an arbitrary dimensionless fluctuating scale variable, p(0) is the
terminal point of the function p()\), and ®[p()\)] is some convenient gauge-
fixing functional [3,5,6]. The only condition on ®[p()\)] is that

[ Pove ] = 1. (4)

The prefactor i/mc in Eq. (1) is the Compton wave length of a particle of
mass m, and A(x), V(x) stand for the vector and scalar potential of the
system, respectively. The constant F is the system energy, and x is the
spatial part of the (4 + 1)-vector * = (x,7). The functional integral for x in

the representation of Eq. (1) can be interpreted as the expectation value of
the real functional exp {— )\/\b d)\ﬁp()\)V(x()\))/h} over the measure

IR
KO(XbJXa;)\b - )\a) = /D4£1}'()\) eXp{ — ﬁ/ d\
A

a
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With this interpretation, the entire Green’s function turns into the following
formula,
ih —1 2 dap(N)E
G(Xp,Xq; F) = — dS Dp(A A)] e wixa 4P

2me

x<exp{ 5 / NGOV <<A>>}>p<o>, (6)

in which & = (m?c* — E?)/2mc®> and 3 = E/mc?, with the notation
(x) standing for the expectation value of the moment * over the measure
Ko(xp,Xaq; Ao — Ag). Equation (6) forms the basis for studying the relativistic
potential problems via the Feynman-Kac type formula.

Expanding the potential V(x) in Eq. (6) into a power series and inter-
changing the order of integration and summation, we have

ih

2me

Z Come <<A dxp<A>v<x<A>>> >p<o>. ™

G(xp,%xa; B) = dS/DP<I> [ple™ i o0

We see that the calculation of the relativistic path integral now turns mto the
computation of the expectation value of moments Q" (Q = f dApV (x)) over
the Feynman measure and their summation in accordance with the Feynman—
Kac type formula. Ordering the A as \; < A2 < --- < A, < Ay and denoting
x(\;) = x;, the perturbation series in Eq. (7) explicitly turns into [1]

> Lo <(/A DOV (x <A>>)n>=Ko<xb,xa;AbAa>
E [ oo

/ HKO X]+1,XJ, j+1 — sz Xi dXZ7 (8)

7=0

where Ay = Mg, Ap+1 = Ay X1 = Xp, and x9 = X4. The merit of expanding
the path integral into this form is that we can let ® [p] be equal to the delta
functional § [p — 1] in order to fix the value of p()) to unity, such that the
integration over S in Eq. (7) leads to a Laplace transformation [7-9]. Because
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of the convolution property of the Laplace transformation, we obtain

ih
G(Xb,Xa; E) = ﬁ{GO(X(),Xa;(‘:)

S [ fren)

i=1

where Gg(xp,%4;E) is the Laplace transformation of the pseudo propagator
Ko(xp,Xq; Ap — Ag). For calculating the explicit form of the Green’s function
Gy, the relations between the Cartesian coordinates (1,22, x3,24) and the
polar coordinates (r, v, 6, ¢), with the range of validity 0 < r < 0o, 0 < 9,0 <
m,and 0 < ¢ < 2w, read

r1 =rcost, w2 =rsindcosd, w3 =rsindsindcosp,
x4 = rsindsinfsin p. (10)
With these transformations, the volume element is
dx = sin” ¥ sin Odrdidodep. (11)
We have the angular decomposition of the spherical symmetric systems
oo s l
0 - £ a
Golxj1,%558) = 3D 3 g1 (rjen s €)Y i) Vi), (12)
5=0 [=0 k=—1

where Y1, (X;) = Yo (95,05, ¢;) is the four-dimensional spherical harmonics.
Using the orthogonality relations,

/ sin 0 sin OdrdOdOd oY sy, (R)Y (%) = Suss S St (13)

the intermediate angular part can be performed. It yields

oo S

. l

ih o £/

Gy xa; B) = 5— > > Y Gilro, 103 €)Yan(%6)Yoi(Ra),  (14)
s=0 =0 k=—1

with the pure radial Green’s function

Gl(rbara;g) = Z <_%) gl(n)(rmra;g), (15)

n=0
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The radial integrations are given by

n

9" (1o, 703 ) = / / [To @ir.rs | T] 2V raydr. (16)
0 0 |j=o

i=1

Here the unperturbed radial Green’s function gl(o) has the path-integral rep-

resentation
1 o
9 (1,15 6) = —— / dSe*ES/h/Dr(A)
Ti+1T5 Jo
IR m 2 e . V2(r)
X exp{ - ﬁ /}:a d\ |:5T ()\) - ’LEA(CIZ‘) . X()\) — 2mc2:| . (17)

It is now that we can consider the influence of the A-B effect for systems with
spherical symmetry. The vector potential of the A-B effect is given by
—X463 + T34
A(x) =2g————F5—, 18
(x) =29 23 + 3 (18)
where é3 4 stands for the unit vector along the z,y axis. Introducing the
azimuthal angle around the A-B tube

p(x) = arctan(z4/x3), (19)

the interaction from the A-B effect, denoted in the action by the subscript
mag, has the form

S
Ammag = 110 / Do), (20)
0

where p(\) = p(x(A)), ¢ = dp/dX, and pg = —2eg/hc is a dimensionless
number. The minus sign is a matter of convention. Since the particle orbits
are present at all times, their worldlines in space-time can be considered as
being closed at infinity, and the integral

1 /S

k=— dXp(N) (21)

21 0
is a topological invariant with integer values of the winding number k. The
magnetic interaction is therefore purely topological, its value being

Amag = ihpio2k. (22)
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The influence of the A-B effect in the entire Green’s function G(xp,Xg;&)
can be considered by writing down the explicit form of the four-dimensional
spherical harmonics

[e%¢] s [
YD Van(Re) Vi (Ra)

s=0 (=0 k=—1
S 22 (6 D24+ DD(s — [+ 1
- ZZ Z (s + )1_‘ ( _il_ )2(5 +1) (sin ¥y sin 9, )"
s=0 =0 k=—1 & (S +it )
x CLT ] (cos 1)CLT ] (cosa)Yik (B, 00) Yii (Bas ©a); (23)

where C and Y}, are the Gegenbauer polynomials and the usual three-
dimensional spherical harmonics. The orthogonality relations of Yy (%) can
be easily checked by the formula:

1-2)
/ di sin®* 9C? (cos¥) C (cos 1)) = 2" T (n +2)) Omm-  (24)

0 nt(A+n)T2 ()
With the help of the following relation between the associated Legendre poly-
nomial P#(z) and the Jacobi function ple? )(:r) 8],

WL+ k4 1)

Plk(COS 0) = (_1) F(l + l)

(cos6/2 sin0/2)k Pl(f}ck) (cos®), (25)

the angular part of Eq. (23) turns into

[S'SI l
DD YarlRe)Yiir(Xa)
5=0 (=0 k=—1

X Sn = 22 s+ DA+ DI(s — 1+ DI+ k+ DD — k+ 1)
=222 47T (s + 1 + 2)

§=0 1=0 k=—1
X (sin ¥y sin ¥ )lClH(cos Up)CLT (cos 0, ek (Pv-—9a)
X (cosOy/2cosb,/2sinby/2sinb, /2) k k) (cos )P, r* k) (cosBy). (26)
To go further, let us change the variables s, by defining s — 1 =t¢,l — k =gq
into t,q. Thus the Green’s function of Eq. (14) becomes

o

G(Xbaxaa 2mc iz Z 22(q+k Jr1C7Y +1c(Tb,7"a,5)

t=0 q=0 k=—oc0
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gtk 1) [2(g+k) +1]T(g+ 2k + Dl(g + DI+ 1)
42T (t 4+ 2(q¢+ k) +2)
x (sin vy sin 0 ) CFHE (cos ) CE T (cos 0, )0 2e)

x (cos By /2 cos O, /2 sin 0,/2 sin 0, /2)" Pq(k’k) (cos Hb)Pq(k’k) (cosb,). (27)

Now, let us consider the A-B effect by invoking Poisson’s summation formula

S ) = / dy S ). (28)

k=—o0 n=——oo

The entire Green’s function G (xp,X,; ) containing the A-B effect becomes

G(xp,Xa; E 2mc ii/dz > 22@TIG L (ry,mas €)

t=0 q=0 k=—oc
L rarz+)2(g+2) + YT(g+ 22+ Dl(g+ DI+ 1)
AT (t+2(q + 2) +2)
X (sindy sin g )77 CI* T (cos 9, ) I (cos 9, ) et —Ho) (Pot2km—¢a)

X (cosBp/2 cosf,/2sinb,/2sin b, /2)* Pq(z’z) (cos Qb)Pq(z’Z) (cosby). (29)

The sum over all k£ in Eq. (29) forces z to be equal to pp modulo an arbitrary
integral number leading to

G(Xb,xa, ZZ Z 22 q+‘k+p‘0‘)+1G ‘Hk‘i’P‘O (Tb,'l"a,(c/‘)

€ 120 4=0 k= oo
o [2(a+ [k + pol) + 1 T(q + 2|k + po| + (g + DI'(E +1)
4m2T(t + 2(q + |k + pol) +2)
x(t+q+ |k+po|+1) (cosQb/2cos&a/Zstb/ZSinQa/Z)‘H”D‘
x (sind, sinﬁa)‘”‘kﬂm Cg+|k+“0‘+1(00819 )Cq+|k+uo|+1(cos 9a)

qu(lkﬂtoHkﬂtol)(COSgb)pq(lk+#o|7\k+#o\)(cos9 Ye ik(pp—¢a) (30)

From this equation, we see that the influence of the A-B flux will cover any
dimensions although it is just described by the two-dimensional coordinates.
Its effects are not only in the energy spectra but also in the wave functions of
higher-dimensional spaces. As a realization, we consider the pure Coulomb
system moving in the fields of A-B in four dimensions. Since the potential
of Coulomb is —e?/r, the pure radial amplitude Gy |54 .0|(rb,7a; €) has the
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form
m = (mBe2\"
G ot 1k+80| (105703 E) _%Tbr Z( > qi)‘k+w‘(rb,ra;€), (31)
with

(n)
a0l (02 Tai € / / ng+\k+ﬁo Tit1 75 & Hdr“ (32)

in which ¢ is given by [7]

q+|k+Bo|

(0) .
Gatli+pol (1341755 €)

_[TdS _eq —m(r2, ,+r2)/2hS mrjyiry
_A —e h*e J+1 J I\/[(q+‘k+uo‘)+l]2*a2 (E S )(35)

To obtain the explicit result of g(n) we note that [7]

q+|k+B0|°

/ %ef%sefm(riwi)/%slp <ﬂ”’r“)
0

h S
o 1 2K,/TpTa
N 2/ dzsinhzeH(Tﬁra)wthzjgp( :in}ib; ) @)
0

with k = vm?2c* — E2/he. With the help of the integral formula

/OO drre™"" /9L, (sr)L, (¢r) = Se* &AL (age/2), (35)
0

we obtain the result

1 oo 0 0
9yt 001 €) :/0 Gati 5ol (073 )0, sy (73 E)r
22

== Oozh(z)dz, (36)
K Jo

where the function h(z) is defined as

h(z) = b e r(ro+ra) coth z 26y TbTa) . (37)

sinh z 2/[(g+|k+Bo]) +1]2 —a? ( sinh z
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The expression for g((zi)‘ ot Bo| (rp,7q; €) can be obtained by induction with re-
spect to n, and is given by

ontl | [

O s (o €) = S | 2 (), (38)

Inserting this expression in Eq. (31), we obtain

m 2 o0 2mpe?
Gq-&-\k-&-ﬁo\(rbﬂ“a;g) = ErbTa/o dze( [ )
1 —k(rp+ra) coth z 26+/TbTa
X sinhz - IQ\/[(q+|k+ﬁ0D+1}27a2 sinhz /- (39)

The integration can be done by using the formula

ee} 2v /
/ dy e exp {—% (Ca + &) cothy} 1, (t <b<a>
0

sinh y sinh y

(4w /2-v)
= T D) Vw2 (160) M2 (tGa) (40)

where M, , and W, ,, are the Whittaker functions. We complete the integra-
tion and obtain

1 me

Gatlhtpol (165 7a; €) = (ro7a)3/2 /m2c* — E2
T (1/2+ VI@+ [k + pol) + 12 = 02 - Ea/m>

X

r <1+2\/[(q+|k+uo)+1]2—a2)

2
2.4 2
><WEoc/ m?cT—E?,/[(q+k+0B0|)+1]2 —a? (hcm%)

2
= 2.4 _ 2
XMy, ) Jmae=g, /@ e sl TP a2 <hcmra) - @

Inserting this in Eq. (30), we obtain the entire relativistic Green’s function
of the A-B-C system in four-dimensional space. The energy spectrum is
determined by the poles of the Gamma function

12+ \lla+ 1+ pol) +1° — a2 = Ba/ v/l — B2 = ., (42)
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where n, = 0,1,2,... . It is easy to find the energy levels by expanding the
parameter « in the lowest two orders:

a? at

By =mc* {1~ 2 3
2(ny +q+ |k +pol +3/2)°  (ne+q+ [k + pol +3/2)

1 3 1 6

o) e o 7] R SR
We see that, if the flux is quantized, the result is reduced to the pure rela-
tivistic Coulomb spectrum in four dimensions [7] by 47g = 2whe/ex integer,
leading to an integer-valued |k + pip|. In comparison with the conventional
path-integral treatment of the hydrogen atom, the merit of our approach is
that the complicated multi-valued Kustaanheimo-Stiefel and the space-time
transformation techniques are avoided. Furthermore, the calculation of the
entire Green’s function is just related to the unperturbed one.

3 Discussion

We have discussed the influence of the A-B effect on the single particle system
moving in a spherical symmetric potential. We have shown that the influence
of the flux on the energy spectra and wave functions will cover any space
dimensions. This is not common for particles moving in magnetic fields. We
remind the Laudau levels of a particle moving in a homogeneous magnetic
field B pointing along the direction of the third axis. The magnetic field can
be described by the vector potential A (x) = (0, Bz, 0) or a more complicated
one by performing phase transformation of an appropriate gauge. For the
exact propagator it turns out that the particle is free in the third axis and,
of course, in higher dimensions. The reason lies in the topological effect
of the A-B coupling to the angular momentum, leading to effects in any
dimension. In recent years, topological effects and geometrical phases have
penetrated many areas of science. We hope that our discussion contributes
to our understanding of the role of topology in physics.
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