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‘We point out that the singularity in the interquark potential at small distances
disappears in infinite space-time dimensions if a Nambu-Goto string is anchored
at one end to an infinitely heavy quark and at the other to an infinitely light
quark. This suggests that, if such quarks are placed at the ends of the string, some
unphysical features such as tachyon states in the string spectrum are absent also
in finite dimensions.

1 Introduction

We consider it a great honour presenting a contribution to the Festschrift
dedicated to Professor Hagen Kleinert on the occasion of his 60th birthday.
We were lucky having a very fruitful and instructive collaboration with him
in our studies of string dynamics, when we had the opportunity to profit from
Kleinert’s intuition and his nonstandard approaches to complicated problems
of theoretical physics.

Here we present the results of such a collaboration when we studied the
effect of the boundary conditions imposed on dynamical variables (string co-
ordinates) on the Nambu-Goto string spectrum. It is difficult to overestimate
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the role of Professor Kleinert in obtaining these results which are in main
part due to his skill of deducing far going physical inferences from the math-
ematical facts derived.

It is generally believed that some modification of the Nambu-Goto string
model will eventually become a fundamental theory capable of explaining
the forces between quarks in a simpler way than quantum chromodynam-
ics (QCD). Indeed, the correct large-distance confinement behavior [1-3] is
automatically obtained, by construction, whereas that in QCD can only be
found by arduous lattice simulations [4,5]. Also the first quantum correction
to this behavior, the universal Liischer term [1,6], is found immediately. It
is a one-loop contribution to the string energy and corresponds to the zero
point energy of the small oscillations, coinciding with the Casimir energy at
T=0.

Certainly, it cannot be hoped that the Nambu-Goto string is anywhere
close to the real color-electric flux tube between quarks since it is uncapable of
reproducing the 1/R-singularity at small R caused by the asymptotic freedom
of gluons. Some essential modification accounting for the finite diameter of
the flux tube will be necessary, in particular its transition into a spherical bag
at small quark separations. A first attempt in this direction was taken some
time ago by adding an asymptotically-free curvature stiffness term [7], but
this term introduced other problems. In particular, the true stiffness constant
of the flux tube appears with the opposite sign [8].

In spite of the essential differences between a Nambu-Goto string and a
flux tube connecting quarks, the question arises how the unphysical proper-
ties of a Nambu-Goto string change if quarks are placed at its ends. The
purpose of this note is to point out that in one extremal configuration, at
least the singularity of the string potential disappears, indicating the absence
of tachyons in that case [9].

To obtain a first idea about all properties of a fully fluctuating string, it
is useful to investigate the limit of infinite space-time dimension D, where
a saddle-point approximation to the functional integral yields exact results
via one-loop calculations. This limit exhibits immediately an important un-
physical feature of the Nambu-Goto string model [1]. There a complex string
potential appears at distances smaller than a critical radius R., where the
interquark potential vanishes. The existence of such a critical radius is at-
tributed to tachyonic states in the string spectrum [10].

This and other unphysical properties are found in the so-called static
interquark potential, where the string is anchored to immobile infinitely heavy
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quarks. In this limit, the eigenfrequencies of the string are w, = nn/R,
n = 1,2,..., where R is the distance between the quarks. The associated
Casimir energy reads

D2 & (D — 2)
Ec=—"—+= == — 1
€T3 ;“’ 24 R S

yielding the well-known Liischer term. Here Riemann’s zeta function has been
used [11].

We shall see in Section 3 that the Casimir energy determines the in-
terquark potential completely in the limit D — oo, yielding

R? —2 _ 2REc

V(R) = M2R L+ 25 =5p (2)
0

Inserting (1), the potential calculated by Alvarez follows [1]

/ R? m(D—2
VAlvarez = MgR - R—;, Rz = (127]\/[02) (3)

The quantity Mg is the string tension. The same potential is found for strings
with free ends due to the same Casimir energy (1).

2 Interquark Potential Generated by a String with Massive Ends

If a Nambu-Goto string has point-like quarks of masses mi, ms at the ends
moving along the worldlines C,,a = 1,2, the action reads [12] (h = ¢ = 1):

A:Mé//d%\/gima/dsa, (4)

Ca

where g = det(g,p) is the determinant of the string metric. If the string
coordinates are parameterized by z# (&), then go3 = Ona* Ogx,, o, = 0,1.
For calculating the interquark potential from such an action one conveniently
uses the Gauss parameterization:

a*(t,r) = (t,rut,r), 0<r<R, p=01,....,D-1, (5)

where the vector field u(t,r) = (z2(t,7),...,2P~1(t,7)) describes the trans-

verse displacements of the string in D dimensions. Then gog = dog +
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OJqudpgu, with uu = Zf;zl w w9, The fluctuation spectrum is found from the
linearized equations of motion and boundary conditions

Hu = 0, (6)
mii = MZu', r =0, (7)
meit = —MZv, r=R. (8)

Here dots and primes denote the derivatives with respect to t and r, respec-
tively, and L] = 92/9t?> — 9%/9r%. The general solution to these equations
has the form

; V2 ol .
uj(t,r):zﬁgZeW"tw—”un(r), j=2,...,D-1, 9)
n#0
where the amplitudes o satisfy the usual rule of the complex conjugation,

an = a*,,. The unnormalized eigenfunctions u,(r) are

U (r) = cosw,r — wnm—; sinw,r, (10)
Mg

and the eigenfrequencies w,, satisfy the secular equation

Mg (my + ma)w

tanwR = .
mymow? — M§

The Hamiltonian operator reads

D—

H = Z Z wnallal + Eg, (12)

n 1=

=

where E¢ is the Casimir energy

D2
Bo="5" wn. (13)

n

The creation and annihilation operators satisfy the usual commutation rules
[a’iw CIZ,I] = &4 dnm - (14)

The Casimir energy [13,14] renders the Liischer correction to the interquark
potential [6].

As in all field theories [14], the Casimir energy E¢ of a string diverges for
large n, and a renormalization is necessary to obtain physical results. If both
masses are infinite or zero, the roots in Eq. (11) are nw/R with integer n, and
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the sum over eigenvalues is made finite with the help of the zeta function [11]
in Eq. (1).

The interesting alternative situation is the limiting case, m; = oo and
mg = 0, in which one end is fixed, the other free. Such a string approximates
mesons consisting of one heavy and one light quark bound together by a
color-electric flux tube. In this limit, the boundary conditions (7) and (8)
simplify to

u(t,0) =0, u'(t,R) =0, (15)

and the secular equation (11) assumes the form

coswR = 0, (16)
which is solved by string eigenfrequencies w,, being half-integer multiples of
7/R: w, = (n+1/2)7/R for n=0,1,... . Then, the Casimir energy is

(D — 2)
Ec=—_—-", 17

c BE (17)

where again the Riemann zeta function has been used [11,15]. The Casimir
energy has now a positive sign, and half the magnitude, and Eq. (2) yields
the interquark potential

1 R2 m(D —2)
(B) — M2Ry/1 4 = =< 2 2 1
v 1 R R =T (18)

This is an important result because the interquark potential (18) is real for
all distances R in the limit D — oco. This implies that a string with these
boundary conditions is a physical model for all distances R (certainly, again
in the limit D — o0). Figure 1 compares the new string potential which
is physical for all distances R with the Alvarez potential which is real only
for R > R.. This observation raises the question whether there might be an
entire regime of asymmetric quark mass configurations for which the potential
remains physical. We intend to study the general case of both masses being
finite. Then the roots in Eq. (11) have the large-n behavior

+ Mg (my + m2) 1 + O3, (19)

T
Wp >~ N —
R mims nmw

The formal zeta function regularization can no longer be applied (since
S0 nt=((1) = 00), calling for a different and more physical subtraction
procedure.
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Figure 1. Dependence of the dimensionless interquark potential on the boundary condi-
tions in the string model. The upper curve shows the potential (18) corresponding to the
extremely asymmetric boundary condition of one string end being fixed, and the other free
(m1 = oo, ma = 0). The lowest curve presents Alvarez’ result (3) for strings with both
ends fixed or free (m1 = oo, m2 = o0). The lengths are measured in units of Alvarez’
critical radius R.. The remaining curves show the potential for one infinite and one finite
quark mass ma corresponding to the reduced mass parameter p2 = 0, 1/5, 1, 2, 10, 100, oo
(from lowest to highest curves).

There exists a simple analytic expression for the subtracted Casimir

energy [16,17]. To find it we introduce the dimensionless frequency sum
S = (12R/7) )", wyn and rewrite it as

6Ri d
S = — dww% log[cos(wR)MZ(m1 + ma)w
— sin(wR) (mymaw? — My)] — (R — o). (20)

The derivative of the logarithm contains the solutions of the secular equa-
tion (11) as poles with unit residue. The contour of integration encloses the
positive w-axis in the clockwise sense. After opening up the contour and inte-
grating along the imaginary frequency axis w = iy, a partial integration leads
to

6R [
S = — / _ dylog[cosh(yR) Mg (my + ma)y +

+ sinh(yR) (mymay® + M§)] — (R — o). (21)

For a comparison of the behavior of the quark potential for various quark mass
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configurations it is useful to go over to the dimensionless distance variable
p = R/R. and to reduced quantities p; o2 = Ry 2/R., where R; 5 are length
parameters associated with the quark masses defined by

w(D —2)
Rio=——7—. 22
1,2 12m172 ( )
With the integration variable z = yR, we can rewrite S as
12 > —2z
S(p)=— | dzlog[1— e *h(z,p)],
0
22 — (p1 + p2)p 2 + p1p2p?
O P ) (23)

224+ (p1+p2)pz + pip2p?

For my = oo, i.e. py = 0, S(p) is a simple function of pap which runs from
S = —1for pap=0to S =1/2for pap = co. In terms of S(p), the interquark
potential acquires the general form [16,18,19]

| S(p)

In Fig. 1 we have plotted the potential for p; = 0 and different py =
0,1/5,1, 2,10, 100, co. The plot shows that only the limit my = 0 is as-
sociated with a real interquark potential for all R. For a small but finite mso,
the function S(p) always becomes negative if the radius R is much smaller
than ma/Mg.

3 Functional Integral for String Potential

Let us verify that the interquark potential is indeed determined by the Casimir
energy as stated in Eq. (2). The potential V(R) between massive quarks
separated by a distance R is defined by the functional integral [6,20,21]

where Ag is the Euclidean action

T R
Ap = M2 /dt/dr Vot (5 + Do pu) +
0 0



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

632 G. Lambiase and V.V. Nesterenko

T

+>  ma /dt VI+02(t,r). (26)

a=1 0

We want to calculate the leading term for D — oo. As usual, we make the
action harmonic in the string positions by introducing auxiliary composite
fields 0.3 and by constraining these to be equal to d,udsu by means of
a Lagrange multiplier «®?. By a similar manipulation, also the end-point
actions can be made harmonic. After some manipulations, the functional
integral (25) becomes Gaussian in u and can be performed with the result

TV / [Da][Do] e A=l T s o0, (27)
where
T R
Ap = M} /dt/dr {q/det(&x@ +0a8) — %aaﬂ0a5:| +
0 0
+¥ Trln(—d,a*?dp) . (28)

The boundary term in (26) is taken into account via the eigenvalues of the
differential operator —9,a*’d5 in the action (28). As in Ref. [1], the func-
tional integral is determined by the stationary point of (28) at which the
matrices « and o are diagonal. This simplifies the functional trace in (28)
which becomes

o1l

D2
Tr In(—000®P05) =T —5 P (29)

Extremizing (28) with respect to oqg,o11,a%, a!! yields indeed the string
potential (2), as stated above.

4 Closing Remarks

It will be interesting to see whether the results derived in this note are present
also in a finite dimension D. If this is so, then at least the limiting asymmetric
quark mass configuration may be free of some of the unphysical features of
present-day string models.
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Finally we note that a dependence of the interquark potential on the quark
masses at the ends was observed before in different ways [4,5]. In quantum
field theory, the influence of different boundary conditions upon the Casimir
effect has also been explored [14] resulting in energies of opposite signs.
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