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This paper, dedicated to Hagen Kleinert, is an exposition of the relationship be-

tween the Witten functional integral and the theory of Vassiliev invariants of knots
and links in three-dimensional space.

1 Introduction

In this article we want to show how Vassiliev invariants in knot theory arise
naturally in context of the Witten functional integral. The relationship be-
tween Vassiliev invariants and the Witten integral has been known since Bar-
Natan’s thesis [1] where he discovered, through this connection, how to define
Lie algebraic weight systems for these invariants.

The paper is a sequel to the Refs. [2-4] and an expanded version of a talk
given at The Fifth Taiwan International Symposium on Statistical Physics
(August 1999). In these papers we show more about the relationship of Vas-
siliev invariants and the Witten functional integral. In particular, we inves-
tigate how the Kontsevich integrals, used to give rigorous definitions of these
invariants, arise as Feynman integrals in the perturbative expansion of the
Witten functional integral; see also the work of Labastida and Pérez [5] on
this same subject. Their work comes to an identical conclusion, interpreting
the Kontsevich integrals in terms of the light-cone gauge and thereby extend-
ing the original work of Frohlich and King [6]. The purpose of this paper is
to give an exposition of the beginnings of these relationships and to introduce
diagrammatic techniques that illuminate the connections.
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This article is divided into two sections. First we discuss Vassiliev invari-
ants and invariants of rigid vertex graphs and then we introduce the basic
formalism and show how the functional integral is related directly to Vassiliev
invariants.

It gives me great pleasure to dedicate this paper to Hagen Kleinert. His
pioneering work [7] in the applications of functional integration to physical
problems and his interest in topological work has sustained my own interest
in this field since we met in 1996 in a conference on this very topic held
in Cargese, Corsica, and organized by Pierre Cartier and Cécile DeWitt-
Morette [8].

2 Vassiliev Invariants and Invariants of Rigid Vertex Graphs

If V(K) is a Laurent polynomial valued, or more generally, commutative ring
valued invariant of knots, then it can be naturally extended to an invariant of
rigid vertex graphs [9] by defining the invariant of graphs in terms of the knot
invariant via an “unfolding” of the vertex. That is, we can regard the vertex
as a “black box” and replace it by any tangle of our choice. Rigid vertex mo-
tions of the graph preserve the contents of the black box, and hence implicate
ambient isotopies of the link obtained by replacing the black box by its con-
tents. Invariants of knots and links that are evaluated on these replacements
are then automatically rigid vertex invariants of the corresponding graphs.
If we set up a collection of multiple replacements at the vertices with stan-
dard conventions for the insertions of the tangles, then a summation over all
possible replacements can lead to a graph invariant with new coefficients cor-
responding to the different replacements. In this way each invariant of knots
and links implicates a large collection of graph invariants [9,10]. The simplest
tangle replacements for a 4-valent vertex are the two crossings, positive and
negative, and the oriented smoothing. Let V(K) be any invariant of knots
and links. Extend V to the category of rigid vertex embeddings of 4-valent
graphs by the formula

V(K*) = aV(K+) =+ bV(K_) + CV(K()) s (1)

where K, denotes a knot diagram K with a specific choice of positive crossing,
K_ denotes a diagram identical to the first with the positive crossing replaced
by a negative crossing, and K, denotes a diagram identical to the first with
the positive crossing replaced by a graphical node. This formula means that
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Figure 1. Exchange identity for Vassiliev invariants.

we define V(@) for an embedded 4-valent graph G by taking the sum

V(G) = Z aiJr(S)bi’(S)ciO(S)V(S) , (2)
s
with the summation over all knots and links S obtained from G by replacing a
node of G with either a crossing of positive or negative type, or with a smooth-
ing of the crossing that replaces it by a planar embedding of non-touching
segments (denoted 0). It is not hard to see that if V/(K) is an ambient isotopy
invariant of knots, then, this extension is a rigid vertex isotopy invariant of
graphs. In rigid vertex isotopy the cyclic order at the vertex is preserved, so
that the vertex behaves like a rigid disk with flexible strings attached to it at
specific points.
There is a rich class of graph invariants that can be studied in this manner.
The Vassiliev invariants [11,12] constitute the important special case of these
graph invariants where a = +1, b= —1 and ¢ = 0:

V(K. = V(K}) - V(K_). (3)

Call this formula the exchange identity for the Vassiliev invariant V' (see
Fig. 1). Thus V(G) is a Vassiliev invariant if V' is said to be of finite type k
if V(G) = 0 whenever |G| > k where |G| denotes the number of (4-valent)
nodes in the graph G. The notion of finite type is of extraordinary significance
in studying these invariants. One reason for this is the following basic Lemma.

LEMMA. If a graph G has exactly k nodes, then the value of a Vassiliev

invariant vi of type k on G, i.e. vi(G), is independent of the embedding of
G.
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Figure 2. Chord diagrams.

PRrROOF. The different embeddings of G can be represented by link diagrams
with some of the 4-valent vertices in the diagram corresponding to the nodes
of G. Tt suffices to show that the value of vi(G) is unchanged under switching
of a crossing. However, the exchange identity for vy shows that this difference
is equal to the evaluation of vy, on a graph with £+ 1 nodes and hence is equal
to zero. This completes the proof.

The upshot of this Lemma is that Vassiliev invariants of type k are in-
timately involved with certain abstract evaluations of graphs with k£ nodes.
In fact, there are restrictions (the four-term relations) on these evaluations
demanded by the topology and it follows from results of Kontsevich [12] that
such abstract evaluations actually determine the invariants. The knot invari-
ants derived from classical Lie algebras are all built from Vassiliev invariants
of finite type. All of this is directly related to the Witten functional inte-
gral [13].

In the next few figures we illustrate some of these main points. In Fig. 2 we
show how one associates a so-called chord diagram to represent the abstract
graph associated with an embedded graph. The chord diagram is a circle
with arcs connecting those points on the circle that are welded to form the
corresponding graph. In Fig. 3 we illustrate how the four-term relation is a
consequence of topological invariance. In Fig. 4 we show how the four-term
relation is a consequence of the abstract pattern of the commutator identity
for a matrix Lie algebra. This shows that the four-term relation is directly
related to a categorical generalisation of Lie algebras. Figure 5 illustrates
how the weights are assigned to the chord diagrams in the Lie algebra case
by inserting Lie algebra matrices into the circle and taking a trace of a sum
of matrix products.
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Figure 3. The four-term relation from topology.

3 Vassiliev Invariants and Witten Functional Integral

In Ref. [13] Edward Witten proposed a formulation of a class of 3-manifold

invariants (see also Ref. [14]) which generalize Feynman integrals taking the
form

Z(M) _ /DAe(ik/47r)S(1VI,A) ) (4)

Here M denotes a 3-manifold without boundary and A is a gauge field, also
called a gauge potential or gauge connection, defined on M. The gauge field is
a one-form on a trivial G-bundle over M with values in a representation of the
Lie algebra of GG. The group G corresponding to this Lie algebra is said to be
the gauge group. In this integral the action S(M, A) is taken to be the integral
over M of the trace of the Chern-Simons three-form AAdA+ (2/3)ANANA,
where the product is the wedge product of differential forms. Z (M) integrates
over all gauge fields modulo gauge equivalence. The formalism and internal
logic of Witten’s integral supports the existence of a large class of topological
invariants of 3-manifolds and associated invariants of knots and links in these
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Figure 4. The four-term relation from categorical Lie algebra.

manifolds.

The invariants associated with this integral have been given rigorous com-
binatorial descriptions but questions and conjectures arising from the integral
formulation are still outstanding. Specific conjectures about this integral take
the form of just how it implicates invariants of links and 3-manifolds, and how
these invariants behave in certain limits of the coupling constant k in the inte-
gral. Many conjectures of this sort can be verified through the combinatorial
models. On the other hand, the really outstanding conjecture about the in-
tegral is that it exists! At the present time there is no measure theory or
generalization of measure theory that supports it. Here is a formal structure
of great beauty. It is also a structure whose consequences can be verified by
a remarkable variety of alternative means.

We now look at the formalism of the Witten functional integral in more
detail and see how it implicates invariants of knots and links corresponding
to each classical Lie algebra. In order to accomplish this task, we need to
introduce the Wilson loop. The Wilson loop is an exponentiated version of
integrating the gauge field along a loop K in three-space that we take to be
an embedding (knot) or a curve with transversal self-intersections. For this
discussion, the Wilson loop will be denoted by the notation Wg (A) = (K|A)
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Figure 5. Calculating Lie algebra weights.

to stress the dependence on the loop K and the field A. It is usually indicated
by the symbolism

Wi (A) = (K|A) = tr (Pefx A) . (5)

Here P denotes path ordered integration. As we are integrating and expo-
nentiating matrix valued functions, we must keep track of the order of the
operations. The symbol tr denotes the trace of the resulting matrix. With
the help of the Wilson loop functional on knots and links, Witten writes down
a functional integral for link invariants in a 3-manifold M:

Z(M, K) = / DACGH/ATSOL A (pefic 4) = / DA/ (K| 4) . (6)

Here S(M, A) is the Chern-Simons Lagrangian as in the previous discussion.
We abbreviate S(M, A) as S and write (K|A) for the Wilson loop. Unless
otherwise mentioned, the manifold M will be the three-dimensional sphere
S3.

An analysis of the formalism of this functional integral reveals quite a bit
about its role in knot theory. This analysis depends upon key facts relating
the curvature of the gauge field to both the Wilson loop and the Chern-
Simons Lagrangian. The idea for using the curvature in this way is due to Lee
Smolin [15] (see also Ref. [16]). To this end, let us recall the local coordinate
structure of the gauge field A(x), where x is a point in three-space. We can
write A(z) = A¢(z)T,dz"* where the index a ranges from 1 to m with the
Lie algebra basis {T4,7%,T5, ..., T} and the index k goes from 1 to 3. For
each choice of @ and k, Af(z) is a smooth function defined on three-space. In
A(z) we sum over the values of repeated indices. The Lie algebra generators
T, are matrices corresponding to a given representation of the Lie algebra of
the gauge group G. We assume some properties of these matrices as follows:
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(1) [Ta, Ty] = ife°T,. where [z,y] = xy — yx , and the matrix of struc-
ture constants f®¢ is totally antisymmetric. There is summation over
repeated indices.

(2) tr(T,Tp) = dap/2 where 64p is the Kronecker delta, i.e. 6 = 1if a = b
and zero otherwise.

We also assume some facts about curvature (the reader may enjoy comparing
with the exposition in Ref. [17]; but note the difference of conventions on the
use of ¢ in the Wilson loops and the curvature definitions). The first fact is
the relation of Wilson loops and curvature for small loops:

FacT 1. The result of evaluating a Wilson loop about a very small planar
circle around a point z is proportional to the area enclosed by this circle times
the corresponding value of the curvature tensor of the gauge field evaluated at
x. The curvature tensor is written F% (z)T,dx"dy®. It is the local coordinate
expression of FF'=dA+ AN A.

APPLICATION OF FACT 1. Consider a given Wilson line (K|S). Ask how its
value will change if it is deformed infinitesimally in the neighborhood of a
point z on the line. Approximate the change according to Fact 1, and regard
the point z as the place of the curvature evaluation. Let §(K|A) denote the
change in the value of the line. §(K|A) is given by the formula

(K| A) = da" da® FI* (z) T, (K| A). (7)

This is the first-order approximation to the change in the Wilson line. In this
formula it is understood that the Lie algebra matrices T, are to be inserted
into the Wilson line at the point x, and that we are summing over repeated
indices. This means that each T, (K|A) is a new Wilson line obtained from
the original line (K|A) by leaving the form of the loop unchanged, but
inserting the matrix T, into that loop at the point z. In Fig. 6 we have
illustrated this mode of insertion of Lie algebra into the Wilson loop. Here
and in further illustrations in this section we use Wik (A) to denote the
Wilson loop. Note that in the diagrammatic version shown in Fig. 6 we have
let small triangles with legs indicate da’. The legs correspond to indices just
as in our work in the last section with Lie algebras and chord diagrams. The
curvature tensor is indicated as a circle with three legs corresponding to the
indices of F°.

NoOTATION. In the diagrams in this section we have dropped mention-
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Figure 6. Lie algebra and curvature tensor insertion into the Wilson loop.

ing the factor of 1/4x that occurs in the integral. This convention saves
space in the figures. In these figures L denotes the Chern-Simons Lagrangian.

REMARK. In thinking about the Wilson line (5), it is helpful to recall Euler’s
formula for the exponential:
e® = lim (1 + z)n . (8)
n—oo n
The Wilson line is the limit, over partitions of the loop K, of products of

the matrices (1 + A(z)) where z runs over the partition. Thus we can write
symbolically

(K14) = [T (1 + A@)) = ] (0 + Af(2)Tuda®) . (9)

reK rxeK

It is understood that a product of matrices around a closed loop connotes the
trace of the product. The ordering is forced by the one-dimensional nature of
the loop. Inserting a given matrix into this product at a point on the loop is
then a well-defined concept. If T is a given matrix then it is understood that
T(K|A) denotes the insertion of T into some point of the loop. In the case
above, it is understood from the context in the formula that the insertion is
to be performed at the point x indicated in the argument of the curvature.

REMARK. The previous remark implies the following formula for the variation
of the Wilson loop with respect to the gauge field:

6(K|A) k

— = = dz"T,(K|A). (10)

5(Ag(2)) ‘
Varying the Wilson loop with respect to the gauge field results in inserting an
infinitesimal Lie algebra element into the loop. Figure 7 gives a diagrammatic
form for this formula. In that figure we use a capital D with up and down
legs to denote the derivative §/0(A¢(x)). Insertions in the Wilson line are



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

166 L.H. Kauffman

W_~ =Wﬂﬂ’
Y

Figure 7. Differentiating the Wilson line.
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Figure 8. Variational formula for curvature.

indicated directly by matrix boxes placed in a representative bit of line.

PRrOOF.
5(?5:;?))) = 5(,42(@) [T+ AW Tady®) = T (0 + A¢(y)Tady®)Tuda®
x [1 O+ AL Tady®) = da" T (K| 4). (11)

FAcT 2. The variation of the Chern-Simons Lagrangian S with respect to
the gauge potential at a given point in three-space is related to the values of
the curvature tensor at that point by the following formula:

u B 4S

Frs(m) Erst 5(Ag(1‘)) . (12)
Here €44 is the epsilon symbol for three indices, i.e. it is +1 for positive
permutations of 123 and —1 for negative permutations of 123 and zero if any
two indices are repeated. A diagrammatic representation for this formula
is shown in Fig. 8. With these facts at hand we are prepared to determine
how the Witten functional integral behaves under a small deformation of the
loop K.
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THEOREM 1. Let Z(K) = Z(S3,K) and let §Z(K) denote the change of
Z(K) under an infinitesimal change in the loop K. Then

SZ(K) = (4mi k) / dA/ATS VOl T, T (K| A) | (13)

where Vol = €, dx"dz*dx?. The sum is taken over repeated indices, and the
insertion is taken of the matrices T, T, at the chosen point z on the loop
K that is regarded as the center of the deformation. The volume element
Vol = €, gdr"dr®dat is taken with regard to the infinitesimal directions of
the loop deformation from this point on the original loop.

THEOREM 2. The same formula applies, with a different interpretation, to the
case, where x is a double point of transversal self-intersection of a loop K, and
the deformation consists in shifting one of the crossing segments perpendicu-
larly to the plane of intersection so that the self-intersection point disappears.
In this case, one T} is inserted into each of the transversal crossing segments
so that T,T,(K|A) denotes a Wilson loop with a self-intersection at = and
insertions of T, at x + €1 and = + ex where €7 and €2 denote small displace-
ments along the two arcs of K that intersect at x. In this case, the volume
form is nonzero, with two directions coming from the plane of movement of
one arc, and the perpendicular direction is the direction of the other arc.

PRrOOF.
SZ(K) = / DAeR/AMS 5 (K| A) = / D AeURAS g dy FO ()T, (K| A)

08

_ DAe(ik/élﬂ’)Sdl,rdysers Y
/ "S(Af (w))

Tu(K|A)

selik/am)s
= (—4rmi/k /DAierS da"dy T, (K|A
(=Ami/k) | DAS Gy crorde dy TalK1A)
= (amifh) [ DAty S )

6(Ag(x))
— (4ri/k) / D AW Vol T, T (K| A) . (14)

This completes the formalism of the proof. In the case of part 2, a change
of interpretation occurs at the point in the argument when the Wilson line
is differentiated. Differentiating a self-intersecting Wilson line at a point of
self-intersection is equivalent to differentiating the corresponding product of
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Figure 9. Varying the functional integral by varying the line.

matrices with respect to a variable that occurs at two points in the product
(corresponding to the two places where the loop passes through the point).
One of these derivatives gives rise to a term with volume form equal to zero,
the other term is the one that is described in part 2. This completes the proof
of the theorem.

The formalism of this proof is illustrated in Fig. 9. In the case of switching
a crossing the key point is to write the crossing-switch as a composition of
first moving a segment to obtain a transversal intersection of the diagram
with itself, and then to continue the motion to complete the switch. One
then analyzes separately the case where = is a double point of transversal
self-intersection of a loop K, and the deformation consists in shifting one of
the crossing segments perpendicularly to the plane of intersection so that the
self-intersection point disappears. In this case, one T}, is inserted into each of
the transversal crossing segments so that TT%(K|A) denotes a Wilson loop
with a self-intersection at = and insertions of T* at = + €; and « + €5 as in
part 2 of the theorem above. The first insertion is in the moving line, due
to curvature. The second insertion is the consequence of differentiating the
self-touching Wilson line. Since this line can be regarded as a product, the
differentiation occurs twice at the point of intersection, and it is the second
direction that produces the non-vanishing volume form.

Up to the choice of our conventions for constants, the switching formula,
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Figure 10. The difference formula.

as shown in Fig. 10, reads

Z2(K.) — Z(K_) = (4mi/k) / DARADS T T (K| A)
— (i [R)Z(T°T"K...) (15)

where K., denotes the result of replacing the crossing by a self-touching
crossing. We distinguish this from adding a graphical node at this crossing by
using the double star notation. A key point is to notice that the Lie algebra
insertion for this difference is exactly what is done (in chord diagrams)
to make the weight systems for Vassiliev invariants (without the framing
compensation). Here we take formally the perturbative expansion of the
Witten functional integral to obtain Vassiliev invariants as coefficients of the
powers of 1/k™. Thus the formalism of the Witten functional integral takes
one directly to these weight systems in the case of the classical Lie algebras.
In this way the functional integral is central to the structure of the Vassiliev
invariants.
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