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We consider O(N)-symmetric ¢*-theory in its spontaneously broken phase and
investigate how the corresponding one-particle irreducible Feynman graphs with
arbitrary numbers of external legs can recursively be constructed. In particular,
we sketch the derivation of the necessary identities for the effective energy I" (or,
with trivial modifications, effective action), which subsequently can be converted
into recursion relation for graphs. Although the resulting relations will not be as
concise as their counterpart in the N = 1 case, they nevertheless should be a useful
means for graph generation once implemented on a computer.

First let me note that it is a pleasure for me to contribute to the anniver-
sary edition in honor of Prof. Hagen Kleinert. Let this be a small but original
contribution to one of the many areas of theoretical physics he is and he has
been working on through the course of the years. The article can be viewed
as a direct formalized consequence of his work in Refs. [1,2].

The O(N)-symmetric ¢*-theory is a field theoretic model which serves
not only as a toy model in particle physics, but also covers an important
subset of universality classes in the context of critical phenomena. While
several universal quantities can be derived upon working in the symmetric (or
disordered) phase, there are a number of amplitude ratios whose calculation
necessitates to consider the spontaneously broken (or ordered) phase. This
results in the context of perturbation theory in a vast increase of diagrams to
be considered even in low loop orders. Part of this increase is due to three-
point vertices arising in the ordered phase, which also happens already in the
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N =1 case. The other part of the increase is due to the presence of two
different propagators instead of only one in the N = 1 case. For a classic
reference, see Ref. [3]. A more recent reference is Ref. [4], which also contains
a list of related references.

In the context of critical phenomena (and not only there), we are mainly
interested in one-particle irreducible (1PI) diagrams. There are several ways
to obtain these diagrams for N > 1 (for N = 1, see Ref. [5] or, for an
alternative approach, see Ref. [6]). Among them are:

(1) Use the appropriate Feynman rules.

(2) First derive the graphs for single-component ¢*-theory, then replace each
propagator by a sum of Higgs and Goldstone propagators and throw away
those graphs that are not permitted.

(3) Write down recursion relations for the connected graphs and throw away
all non-1PI graphs.

(4) Introduce a mixed propagator which is Higgs at one end and Goldstone at
the other and translate the recursion relations for the single-component
theory into recursion relations for the case at hand. Set the mixed prop-
agator to zero in the resulting diagrams, so only permitted diagrams
survive.

(5) Develop recursion relations for the broken-symmetry 1PI graphs.

Strategy 1 is fraught with the danger of making mistakes, both by hand or
when programming. Strategies 2-4 produce a huge number of diagrams at
intermediate stages that are going to be dropped eventually. Strategy 5 is
the one suggested here. It certainly results in rather elaborate equations, as
we will see below. However, once everything is automated, it appears to be
superior to the other methods. This is especially true if even the generation
of the necessary equations is automated, a task left for future work, since in
this brief report, we present equations derived “by hand”.

Straightforwardly generalizing earlier work in Refs. [5,7] (we use conven-
tions introduced there), let the energy be given by
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with appropriately symmetrized bare propagators H and G and interactions

S, T, L, M, and N. The indices represent real-space arguments as well as
group indices, while the integration signs stand not only for space integrations,
but also for summations over group indices. The currents J and I will be
used to define Legendre transforms while keeping the option of having non-
zero currents J and I in the effective energy.

Define the functionals Z and W by

[j f G]:expW[j j ]:/DQSDXGXP(*E[(ﬁ,X,j,IA,H,G]) (2)

There is an infinite set of identities we can derive for W. A few of the simplest
ones appear particularly useful for our purposes. They are

0:e*W[j,IA,H,G]/D¢DX%67E[¢,X,j,f,H,G]
1

2 oW oW ow
=Jh—-Ji— | H}}'— + Sio3—— + Tios——
1 1 /2 12 57 s 123 5H2_31 s 123 5G2_31

+1/ I W +5_W ow
3 Jasa 124 5j25H9;11 5o 5H3;11

W oW oW
+/ Mi234 B a—— + — — | > (3)
234 0J20G3;  0.J2 0Gay
_ ~WII,I,HG E[¢,x,d,1,H,G]
0=c [ poni (ene )
1 OW

ow
=01+ (S —J A+2/H*—
12+ (1 1)6J2 1 SHyy

. / < PW W oW
a1 U\ G0 HGE T 5y OHy!
) / . PW oW oW
a1 P\ ooyt T 00y 6Gs]

_g/L < 52W LW 6W)
3 Jas PP \GHGOH, | 5H,y 0H,S

W oW W
-2 Mi345 Tt T T
0Hy3 060Gy 0Hyg 0G g




Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

250 B. Kastening
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Next, define W, and W; by

Wo = Wg,r,L,Mm,N=0, W =Wy + Wiy, (6)

For Wy, the identities (3)-(5) reduce to

5Wg 5WO
= [man = [Gun, 7
oWy 1 / / >
=—— | Hyia+ | Hi3Js | HoylJdy |, 8
SH,! 2( 12 , 1393 | 244 (8)
oWy 1 (
— = —= | G2 +/G1313/G24I4>- 9)
6Gy 2 3 4
With appropriate normalization of the path integration measure, this is solved

by

1 1/
WO = —C — = /(lnHil)ll — = /(lnGil)ll
2 1 2 1

+1 I{12(Jl*jl)(JQ*JAQ)—F1 Glg(flffl)(lgffz). (10)
2 J12 2 J12

Now the identities (3)-(5) may be translated into identities for W and then
into recursion relations for the connected graphs of the theory. One possibility
to obtain the 1PI graphs would be to just throw away the non-1PI graphs.
However, this would generate a vast number of connected, but non-1PI graphs
to be thrown away later anyway and therefore will very soon be an exploding
task. Instead, let us right away turn to the effective energy, the generating
functional of 1PI graphs.
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Define the effective energy I' by a twofold Legendre transformation,

F[Uaﬂ'aHaG} :_W[jvfaHaG]—'—/jlo—l_i'/flﬂ_l;
1 1

with new independent variables
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Define further I'g and I'; by

As usual,

I'o =T's7,0,m N=0, I'=T¢+TI7.
With
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2 2
and therefore with (10)
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This is the only place in I', where J and I still appear, in other words: I'; is

independent of J and I.

Now we can translate (3)-(5) into identities for I'y, which in turn can be

converted into recursion relations for Feynman graphs. The main complica-
tion arises from the fact that we now deal with a twofold Legendre transform,
which destroys some of the ease we are used to from dealing with the NV =1
case [5], since the relations between the second derivatives of W and T’ be-
come more complicated. Instead of translating (3)-(5) in full generality, we

use for each situation the simplest identity available.
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Let us for the remainder invoke a generalized Einstein summation con-
vention, where we sum/integrate over the variables represented by repeated
indices. For the generation of diagrams with at least one external field o, we
translate the simplest identity (3) and obtain

ol 1

1 1
0=——01 — 512301H23 — =S123010203 — =T12301Ga3 — =T12301T273
0o 2 2 2

1 1
—§L12340102H34 - 6L123401020304 - —M12340102G34 - §M123401027T37T4

ol'r 5F
+S12301 Hoy Has—— + T12301 Gy Glas ~——
0H 0G5

5F
0 Hsg
52l 82r

Sosds +2M12340'17T3H25G46F()7G785 5;8

or'r RN
2M H Hgr G
+2Mi23401 T3 Ho5 —— 5o o7lras o gy

+L19340109 Has Hyg——— + L123401 Hog Hag Hyr U3

+2M1234O'17T3H25G46

5F] 52F1
2M7534 H. HgrGagls9G
+ 123401731125 5Hog 67481 89ag0 507070

ol
+Mi2340102G35Ga6—~— 3G + Mi33401 Hos G5 Gar L35 (18)
For the generation of diagrams with no Higgs fields ¢ and no Higgs propagator
H, we may translate (5) with 7', M = 0 and obtain
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where it is understood that in all terms we have set T', M = 0.
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For the generation of all other 1PI diagrams, i.e. diagrams with no Higgs
field o, but at least one Higgs propagator H, we translate (4) with o = 0 and

obtain
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where it is understood that in all terms we have set o = 0.

For diagrams without Goldstone field 7 or propagator G, we may also use
the identities in Ref. [5], of course.

We still have to define the quantities I'7H, ['9¢ THH THG and ¢
appearing in the identities (18)-(20). The first four are given by
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To obtain recursion relations for the 1PI diagrams, it is most useful to separate
Eqgs. (18)-(25) by numbers of loops and by powers of o and . The resulting
equations recursively generate all 1PI Feynman graphs, including the vacuum
graphs (i.e. graphs with zero powers of ¢ and 7).

We can hardly praise our results for conciseness. However, once the deriva-
tion of our equations as well as their implementation in terms of recursion
relations are automated, they provide a straightforward and safe means of
obtaining all 1PI Feynman graphs for the spontaneously broken O(N) ¢*-
theory. Nevertheless it would be very useful if one could find a simpler set of
equations, a task left for future work.
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