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During 1998 1 had the opportunity to work towards my Diploma’s degree under
the guidance of Professor Kleinert. The result was a new algorithm for calculating
highly accurate critical exponents from divergent perturbation expansions of field
theories which I would like to summarize on this occasion. Typically, we possess
L expansion coefficients of such a divergent series in powers of the bare coupling
constant gp, plus two more informations: The knowledge of the large-order be-
havior proportional to (—a)kk!kﬁg%, with a known growth parameter «, and the
knowledge of the approach to scaling being of the type c + ¢ /g%, with constants
c,c’ and a critical exponent of approach w. The latter information leads to an
increase in the speed of convergence and a high accuracy of the results. The al-
gorithm is applied to the six- and seven-loop expansions for the critical exponents
of O(N)-symmetric ¢*-theories in three dimensions, and the result for the critical
exponent « is compared with a recent satellite experiment.

1 Introduction

The field-theoretic approach to critical phenomena provides us with power
series expansions for the critical exponents of a wide variety of universality
classes.

When inserted into the renormalization group equations, these expan-
sions are supposed to determine the critical exponents via their values at an
infrared-stable fixed point ¢ = ¢*. The latter step is nontrivial since the

expansions are divergent and require a resummation, for which sophisticated
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methods have been developed [1]. The resummation methods use the infor-
mation from the known large-order behavior (—a)*k!k?g% of the expansions
and analytic mapping techniques to obtain quite accurate results.

A completely different resummation procedure was developed on the basis
of variational perturbation theory [2] to the expansions in powers of the bare
coupling constant, which goes to infinity at the critical point.

This method converges as fast as the previous ones, even though it makes
only use of the fact that the power series for the critical exponents approach
their constant critical value in the form ¢+ ¢//g¢%, where ¢, ¢’ are constants,
and w is the critical exponent of the approach to scaling.

We may therefore expect that a resummation method which incorporates
both informations should lead to results with an even higher accuracy, and it
is our purpose to present such a method in the form of a simple algorithm [3].

2 The Problem

Mathematically, the problem we want to solve is the following: Let

L
fulos)=>_ frab (1)
k=0
be the first L terms of a divergent asymptotic expansion
flgB)=>_ frak (2)
k=0

with the large-order behavior of the expansion coefficients
Ji P Akl (=a) kP [L+ O(1/R). (3)

Suppose furthermore that f(gp), possesses a strong-coupling expansion of the
type

flgs) = g5 Y brap™, (4)
k=0

which is assumed to have some finite convergence radius |gg| > g5™.
We are interested in an efficient method to determine the strong-coupling
coefficients by from the known coefficients fi of the asymptotic expansion.
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3 Hyper-Borel Transformation

It turns out that ordinary Borel resummation is not well suited to solve
this problem. Therefore we constructed an algorithm which is based on a
generalization to be called hyper-Borel transformation [4] defined by

B(y) =) By", (5)
k=0

with coefficients

B, _wF(k(l/w— 1)+ Bo)
T T (k/w—s/w)T(B)

Jr- (6)

3.1 General Properties
The inverse of this transformation is given by the double integral
F(ﬁo)j{ b /oo dy g |’ yt=e)/@1
= dt ett =5 = | —— =——| B
f(gB) 27 c € 0 y yt(lfw)/w exp JB (y)7
(7)

as can easily be shown with the help of the integral representation of the
inverse Gamma function

1 1
=— [ dte't . 8
T(z)  2mi /C ¢ ®)

The transformation possesses a free parameter 3y which can be used to opti-
mize the approximation fr(¢gp) at each order L. The power w of the strong-
coupling expansion is assumed to lie in the interval 0 < w < 1, as it does in
the upcoming physical applications.

The hyper-Borel transformation has the desired property of allowing for a
resummation of f1,(gp) with the full sequence of powers of gp in the strong-
coupling expansion (4).

Our transform B (y) shares with the ordinary Borel transform the property
of being analytic at the origin and its radius of convergence is determined by
the singularity on the negative real axis at

1 1
aw(l —w)l/e-1" ©)

1
Ys = ——
o
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3.2 Resummation Procedure

A resummation procedure can now be set up on the basis of the transform
B(y). The inverse transformation (7) contains an integral over the entire
positive axis, requiring an analytic continuation of the Taylor expansion of
B(y) beyond the convergence radius.

The reason for introducing the transform B(y) was to allow us to repro-
duce the complete power sequence in the strong-coupling expansion (4), with a
leading power g% and a subleading sequence of powers g‘;k“’, k=1,2,3,....
This is achieved by removing a factor e7??Y with p, o > 0 from the truncated
series (5) of our transform B(y). Furthermore, by removing a second simple
prefactor of the form (1 + oy)~?
hyper-Borel complex y-plane, which determines the large order behavior (3).

, we weaken the leading singularity in the

The remaining series has still a finite radius of convergence. To achieve con-
vergence on the entire positive y-axis for which we must do the integral (7),
we reexpand the remaining series of y in powers of the conformal mapping

k(y) given by

ay
1+oy’

K(y) = (10)

which maps a shifted right half of the complex y-plane with R[y] > —1/20
onto the unit circle in the complex x-plane. Thus we reexpand B(y) in the
following way:

ZBW =e "Y1+ 0y 6Zh’f" )=e pgyz 1+ay (1 + ay)k+s”

k=0

(11)

The inverse hyper-Borel transform of B(y) is now found by forming the inte-
grals of the expansion functions in (11)

I.(98) = (ﬁo) f dte't P
c
Al S e

y Lytt/e—t 9B (1 +oy)+o?

so that the approximants f{(¢gp) may be written as

B) = Z hnIn(gB)' (13)
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The convergent strong-coupling expansion of I,,(gg) is obtained by perform-
ing a Taylor series expansion of the exponential function in (12), which is an
expansion in powers of 1/¢%. After integrating over ¢ and y we obtain an
expansion

L(gs) = g3 > _ by 95", (14)
k=0

which has indeed the same power sequence as the strong-coupling expansion
(4) of the function f(gg) to be resummed and the expansion coefficients are

given by
—1) e N ) ,
pm — (m) 15
ET TR Tl =Dkt Bo+ (L —Ds] * (15)
where igcn) denotes the integral
i](cn) :/ dyefpy(l _i_y)fdfnykuﬂrnfsfl. (16)
0

For large k, the integral on the right-hand side of (16) can be estimated with
the help of the saddle-point approximation, which shows that the strong-
coupling expansion (4) has a finite convergence radius

lgs| > ( (po)

T-wr = "

implying that the basis functions I,,(g5), and certainly also f(gg) itself, pos-
sess additional singularities beside gg = 0. The parameter p will be optimally
adjusted to match the positions of these singularities.

3.3 Convergence Properties of Resummed Series

We shall now discuss the speed of convergence of the resummation procedure.
For this it will be sufficient to estimate the convergence of the strong-coupling
coefficients b of the approximations f(gp) against the true by in (4). The
convergence for arbitrary values of gp will always be better than that. Such
an estimate is possible by looking at the large-n behavior of the expansion
coefficients b,(cn) in the strong-coupling expansion of I,,(¢gp) in (14). This is

determined by the saddle-point approximation to the integral i;cn) in Eq. (16),
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which we rewrite as
0
Zén) :/ dyefpyfnln(H»l/y)(l +y)75ykw7571. (18)
0

The saddle point lies at

yo = ﬁ [1+001/vn)]. (19)

At this point, the total exponent in the integrand is

1
—pys —nln <1 + y—) ==2/pn [1+0O(1/V/n)], (20)
implying the large-n behavior
b;cn) "2 const, x nkeTsTLT0em VM [1+0(1/vn)]. (21)

The coefficients b,f of the approximations f#(gp) are linear combinations of
the coefficients b,(:) of the basis functions I,,(g5):

L
bk =0 h. (22)
n=0

The speed of convergence with which the bﬁ ’s approach by as the number L
goes to infinity is governed by the growth with n of the reexpansion coefficients
hyn and of the coefficients b,(cn) in Eq. (21). We shall see that for the series
to be resummed, the reexpansion coefficients h,, will grow at most like some
power n”, implying that the approximations bﬁ approach their L — oo -limit
b with an error proportional to

bﬁ — by, ~ Lr+kw757671/2 > 672\/@. (23)

This is the important advantage of the present resummation method with
respect to variational perturbation theory [2,5], where the error decreases
merely like =L ™ with 1 — w close to 1/4.

4 Resummation of Ground-State Energy of the Anharmonic Oscil-
lator

Before beginning with the resummation of the perturbation expansions for
the critical exponents of ¢*-field theories, it will be useful to obtain a feeling
for the quality of the above-developed resummation procedure, in particular
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Figure 1. Logarithmic plot of the convergence behavior of the successive approximations to
the prefactor v in the large-order behavior (3), and of the leading strong-coupling coefficient
bg.

for the significance of the parameters upon the speed of convergence. We do
this by resumming the often-used example of an asymptotic series, the per-
turbation expansion of the ground-state energy of the anharmonic oscillator
with Hamiltonian

Hzp—z—l-mzx—z—i-ga:‘l. (24)
2 2

The ground state of this quantum mechanical system has an asymptotic ex-
pansion with a large-order behavior of the form (3), where the growth pa-
rameters are given by o = 3,8 = —1/2,v = 1/6/73, and it also possesses a
strong-coupling expansion (4) with the parameters s = 1/3, w = 2/3. We fix
the parameters in our resummation method by the condition that the approx-
imants EZ(g) of the ground-state energy FEq(g) obey Egs. (3) and (4) with
the same parameters as Fo(g). The best choice of 5y will be made differently
depending on the regions of g.

Let us test the convergence of our algorithm at small negative coupling
constants g, i.e. near the tip of the left-hand cut in the complex g-plane. We
do this by calculating the prefactor  in the large-order behavior (3). In this
case the convergence turns out to be fastest by giving the parameter Gy a
small value, i.e. By = 2.

The values of the approximants v are shown in Fig. 1. They con-
verge exponentially fast against the exact limiting value. The convergence
of the strong-coupling coefficients b,% is given by the stretched exponential
~ e—constxX VL [gee Fq. (23)], rather than ~ e=<emstxLY? for variational per-

turbation theory. The latter is seen on the right-hand side of Fig. 1.
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Table 1. Strong-coupling coefficients b, of the 70-th order approximants E?O (9) =
ZLO:O hnIn(g) to the ground-state energy E9(g) of the anharmonic oscillator. They have
the same accuracy as the variational perturbative calculations up to order 251 in Refs. [2,6].

bn

n
0] 0.667986 259 155 777108270962 02
1] 0.143 668 783 380864 910 020 319
2|—0.008 627 565 680 802 279 127 963

3| 0.000818208905 756 349 542 41
4/—0.00008242921713007721991
5
6
7
8
9

0.000 008 069 494 235 040 964 75
—0.000000 727977 005945772 63
0.000 000 056 145997 222351 17
—0.000 000002 949 562 732 709 36
—0.000000 000064 215331956 97
10/ 0.000000000 048214263 789 07

We have applied our resummation method to the first 10 strong-coupling
coefficients using the expansion coefficients fr up to order 70. The results
are shown in Table 1. Comparison with a similar table in Refs. [2,6] shows
that the new resummation method yields in 70th order the same accuracy as
variational perturbation theory did in 251st order.

5 Resummation of Critical Exponents

Having convinced ourselves of the fast convergence of our new resumma-
tion method, let us now turn to the perturbation expansions of the O(N)-
symmetric ¢*-theories in powers of the bare coupling constant Ag in D = 3
dimensions. If we introduce the dimensionless bare coupling constant gg =
Ap/m, where m is the renormalized mass, the critical exponents are defined
by

d
n=gp——logZs

dgs g5 =00
d m2
2 vt =gg—NIlog -2 25
v g5 ~log 3 (25)

gB=0ox
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Table 2. Critical exponents of the O(N)-symmetric ¢*-theory from our new resummation
method.

v n 14 w ‘
1.1604[8] (4){0.075}]0.0285[6](4){0.037}0.5881[8](4){0.075}{0.803[3]{1}
1.2403[8] (4){0.110}|0.0335[6](3){0.043}(0.6303[8](4){0.065}(0.792[3] {1}
1.3164[8] (5){0.033}/0.0349[8] (5){0.042}/0.6704[7](4){0.098}|0.784[3]{1}
1.3882[10](7){0.210}|0.0350(8] (5){0.043}(0.7062[7](4){0.110}(0.783[3] {1}

w NN = O3

The expansions of the field renormalization constant Zg and the bare mass
mo have been calculated up to seventh order in gp in the literature [7]. When
approaching the critical point, the renormalized mass m tends to zero, so that
the problem is to find the strong-coupling limit gp — oo of these expansions.
In order to have the critical exponents approach a constant value, the power
s in Eq. (4) must be set equal to zero.

In contrast to the quantum mechanical discussion in the last section, the
exponent w governing the approach to the scaling limit is now unknown, and
must also be determined from the available perturbation expansions. As in
Ref. [5.8], we solve this problem by using the fact that the existence of a
critical point implies the renormalized coupling constant g in powers of gp to
converge against a constant renormalized coupling g* for m — 0.

The convergence against a fixed coupling ¢g* occurs only for the correct
value of w in the resummation functions I,,(¢9p,w). At different values, g(g5)
has some strong-coupling power behavior g with s # 0. We may therefore
determine w by forming a series for the power s,

dlogg(gs) 9B ,
= —-——= . 26
= oz os P (9B), (26)

resumming this for various values of w in the basis functions, and finding the
critical exponent w from the zero of s. Alternatively, since g(gp) — ¢g*, we can
just as well resum the series for —¢gs, which coincides with the g-function of
renormalization group theory [not to be confused with the growth parameter

B in (3)]

dg(9B)
dgp

Bl9B) = —gs (27)

The results for the critical exponents of all O(NN)-symmetries are shown in
Table 2. The total error is indicated in the square brackets. It is deduced
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from the error of resummation of the critical exponent at a fixed value of w
indicated in the parentheses, and from the error Aw of w, using the derivative
of the exponent with respect to w given in curly brackets. Symbolically, the
relation between these errors is

[]=(.)+Aw{...}. (28)

The accuracy of our results can be judged by comparison with the most
accurately measured critical exponent o parameterizing the divergence of the
specific heat of superfluid helium at the A-transition by [T. —T'|~®. By going
into a vicinity of the critical temperature with AT ~ 1078 K, a recent satellite
experiment has provided us with the value [9] o = —0.01056 % 0.00038. Our
value for « is deduced from v in Table 2 via the hyper-scaling relation o =
2 —3v to @ = —0.0112 4+ 0.0021, in good agreement with the experimental
number.
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