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In this contribution, an overview of Kleinert’s variational perturbation theory will
be given. Contrary to standard perturbative approaches, this method yields con-
verging approximations uniformly in the coupling strength of anharmonic terms. In
standard quantum mechanics, the simplest example is the one-dimensional anhar-
monic oscillator. It is shown how variational perturbation theory can be exploited
to calculate the convergent strong-coupling expansion from the divergent weak-
coupling perturbation series. By recalling the Duru-Kleinert path-integral solution
of the three-dimensional hydrogen problem, I make use of the mapping between
Coulomb systems in three dimensions and oscillator systems in four dimensions to
also derive the quantum mechanical strong-coupling expansion of the ground-state
energy of the hydrogen problem allowing for an isotropic gr-perturbation.

1 Introduction

Most perturbation expansions in physics are divergent asymptotic series
whose large-order coefficients grow factorially. Typical examples include the
perturbative calculation of the anomalous magnetic moment of the electron in
quantum electrodynamics, field theoretical e-expansions of critical exponents
in statistical physics, and the low-field expansions of the Stark and Zeeman
effects in atomic physics.

The study of the large-order behavior of such asymptotic series and the
problem of developing appropriate resummation techniques has a long history
in Hagen Kleinert’s research group. In fact, shortly after having finished my
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diploma thesis under his guidance and having jointly solved the “particle-
in-a-box” problem with path-integral techniques [1], this was one of the first
research topics we started working on together. After an intense initial period
we returned to this problem many times [2 4] and collected over the years
quite an extensive set of lecture notes [5]. While working on systematic
improvements of the variational approximation [6,7] underlying an effective
classical description of quantum statistics, Kleinert [8] realized in 1993 that
this could lead to a powerful resummation scheme for divergent perturbation
series. Remembering our joint work on the variational scheme [9,10], here
our interests met again and we began to work [11-13] on what will be briefly
described in the following.

The paradigm for a divergent asymptotic perturbation series expansion
is the ground-state energy E(°)(g) of an anharmonic oscillator with poten-
tial V(z) = w?2?/2 + g2*/4 (w?,g > 0). The weak-coupling Rayleigh-
Schrédinger perturbation series takes the form

BO(g —wZE<0 (9/4) , 1)

where the coefficients E =1/2,3/4, —21/8, 333/16, —30885/128, ... can
be shown to grow asymptotically as [14]
B = —(1/m)(6/m) /(=3 k72K L+ O(1/R)). (2)

Only for very weak couplings g, a direct evaluation of the power-series ex-
pansion truncated at a finite order k o 1/g can yield a reasonably good
approximation [5] with an error of the order of exp(—const/g). At larger
couplings the partial sums become very erratic and hence completely useless,
unless some resummation procedure is applied. The accuracy of standard
techniques such as Padé or Borel resummation [5] also deteriorates, however,
quite rapidly in the strong-coupling limit, where F(®)(g) has an expansion of
the form

EO(g) = (9/4)"* [ao + a1(40®/9)*3 + ax(4w®/g)3 + .. } )

2 Variational Perturbation Theory

Variational perturbation theory [7,8,15], on the other hand, yields a sequence
of exponentially fast converging approximations uniformly in g (Refs. [11-
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13,16]), and thus provides a powerful method for calculating the strong-
coupling expansion coefficients «; in (3). As mentioned in the historical
remarks above, the starting point of this approach was the variational princi-
ple for evaluating quantum partition functions in the path-integral formula-
tion [6,7]. While in many applications the accuracy was found to be excellent
over a wide range of temperatures [10], slight deviations from exact [6,7,9,10]
or computer simulation [17] results at very low temperatures motivated a
systematic study of higher-order corrections [7,8,15].

In the zero-temperature limit the higher-order calculations simplify and
lead to a resummation scheme for the energy eigenvalues which can be sum-
marized as follows. First, the harmonic term of the potential is decomposed
into w?z? = Q%22+ (w? — O?) 22, where () is a trial frequency to be optimized
later, and the potential is rewritten as V(z) = Q222 /2 + g(—2022/Q + 2*) /4,
with o = Q(Q2 — w?)/g. Keeping o fixed, one then performs a perturbation
expansion of E](\[,]) = E](\(,])/Q in powers of § = g/03,

which can be readily derived by inserting w = (2% — go/Q)'/? = Q(1 — §o)'/?
into the original perturbation series (1) and reexpanding in powers of §. By
construction the truncated power series Wy (g,Q) = QE](\(,)) (g,0) becomes
independent of € in the limit N — oco. At any finite order, however, it does
depend on (2, the approximation having its fastest speed of convergence where
it depends least on (2, i.e. at points where OWx/0Q = 0. If we denote the
order-dependent optimal value of Q by Qp, the quantity Wx (g, 2x) is the
new approximation to E(®(g).

While Wy is a polynomial in Q2 of degree 3N with g-dependent coefficients,
it can be proven [11] that its derivative with respect to Q admits a compact,
factorized representation, namely OWx /0 = (§/4)" Py (o), where Py (o) =
—2d€(Noil(a) /do is a polynomial of degree N in . This observation simplifies
the calculations considerably and shows that the optimal solutions 25 depend
only trivially on g through oy = Qn(Q3% — w?)/g. The order-dependent
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Figure 1. Exponential accuracy as shown by the rapidly decreasing error Ay = |a(()N
of the Nth approximant (7) for the strong-coupling coefficient oo, where N =1,...,251 is
the order of the weak-coupling expansion.

optimal values of ¢ are found to be well fitted by
on =cN (1 + 6.85/N2/3) , (6)

with ¢ = 0.186 047 272 ... determined analytically (cf. Section 3). This obser-
vation suggested [12] that the variational resummation scheme can be taken
directly to the strong-coupling limit by introducing the reduced frequency

)1/3 wn (g, %), and ex-

© = w/Q, rewriting the approximation as Wy = (g/4
panding the function wy(§,?) in powers of ©? = (w3/g)?/3§?/3. As a result,

for B (g) ~ Wy (g) we find an expansion of the form (3) with coefficients [12]

N k—n
o) (5/4)@n-1D/3 N (_1)ktn © ((L=37)/2\ (k=3\ _. ;i
=G S (U203 () cany.

k=0 n

(7)
If this is evaluated at ¢ = 1/on with oy given in (6), we obtain the expo-
nentially fast approach to the exact limit as shown in Fig. 1 for ag. Notice
the oscillatory modulations. The computation of the higher-order coefficients
a;, proceeds similarly and the results up to n = 22 can be found in Table 1
of Ref. [12]. Our results for ap and o1 based on the first 251 weak-coupling
expansion coefficients are compared in Table 1 with other recent estimates.
So far the more mathematically motivated resummation scheme of Ref. [18]
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Table 1. Estimates of the leading strong-coupling expansion coefficients a,.

(7)) Ref.
0.667 986 259 155 777 108 270 96 [12]
0.667 986 259 155777108 270962016 919 86 [18]
0.667 986 259 155 777108 270962 016 919 860 199 4 [19]
0.667 986259 155777108 270962 016 919 860 199 430404936984 ... | [21]

a1 Ref.
0.143 668 783 380 864910020 3 [12]
0.143 668 783 380864 910020319127 58317 (18]
0.143 668 783 380 864 910020319127 583 168 634 2 [19]

gives more accurate numbers than those in Ref. [12]. However, by applying
extrapolation techniques to the sequences for a,, [19], the accuracy of our
estimates can be further considerably improved. Specifically we employed
Wynn’s e-algorithm [20] where the extrapolants e,(cn) are defined recursively

by e =0, 6 = Wi, and e ™ = V4 1/ (), — ).

3 Convergence Behavior

It is well known that the ground-state energy E(©) (g9) of the quartic anhar-
monic oscillator satisfies a subtracted dispersion relation which implies an
integral representation for the perturbation coefficients [14],

VLI

() _ L -
Ek' _% 0 gk+1dlSCE( )(9)7 (8)

where disc E®)(g) = 2ilm E(©) (g — in) denotes the discontinuity across
the left-hand cut in the complex g-plane. For large k, only its ¢ — 0~
behavior is relevant and a semiclassical calculation yields disc B (g) ~
—2iw(6/7)1/2(—4w3/39g) /? exp(4w?/3g), which in turn implies the large-order
behavior (2) of E,(CO).

The reexpanded series (5) is obtained from (1) by replacing w — Q(1 —
05])1/2, which, in terms of the coupling constant, amounts to § = g/w?® —
3/(1 = 0§)3/2. This implies [13] a dispersion relation for £ = E©) /) and
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Figure 2. Cuts in the complex g-plane. The shaded area shows the circle of convergence
of the strong-coupling expansion.

hence the coefficients E](CO),
) _ 4k dg

. ~(0) / ~
& T o R discc B (g), (9)

where discc E©) (g) is the discontinuity across the cuts C in the complex g-
plane shown in Fig. 2. The cuts C run along the contours Cy, C7, Cs, Cs, the
images of the left-hand cut in the complex g-plane, and C'3, originating from
the square root of 1 — ¢g in the mapping from g to g.

Let us now discuss the contributions of the various cuts to the Nth term
Sn. For the cut C; and the empirically observed optimal solutions oy =
¢N(1+4b/N?/3), a saddle-point approximation shows [13] that this term gives
a convergent contribution, Sy (C4) o e_[_blog(_7)+(cg)72/3]N1/3, if one chooses
c=0.186047272... and 7 = —0.242964 029... . Inserting the fitted value
of b = 6.85, this yields an exponent of —blog(—v) = 9.7, in rough agreement
with the convergence seen in Fig. 1. If this would be the only contribution, the
convergence behavior could be changed at will by varying the parameter b. For
b < 6.85, a slower convergence is indeed observed. The convergence cannot
be improved, however, by choosing b > 6.85, since the optimal convergence is
limited by the contributions of the other cuts.

The cut C7 is still harmless; it contributes a last term Sy (Cj) of the
negligible order e V18N The cuts (53,3, however, deserve a careful con-
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sideration. If they would really start at 0g = 1, the leading behavior would
be e\ (Cy5.3) o oF, and therefore Sy (Cy33) o (0§)Y, which would be in
contradiction to the empirically observed convergence in the strong-coupling
limit. The important point is that the cuts in Fig. 2 do not really reach
the point g = 1. There exists a small circle of radius Ag > 0 in which
E(0>(g) has no singularities at all, a consequence of the fact that the strong-
coupling expansion (3) converges for g > gs. The complex conjugate pair of
singularities gives a contribution Sy (Cy53) ~ e~ NPacost o5 N1/3g5in ),
with a = 1/(|gs|c)?/3. By analyzing the convergence behavior of the strong-
coupling series we find |gs| ~0.160 and @~ —0.467, which implies an asymp-
totic falloff of e=923N"" for the envelope, and furthermore also explains the
oscillations in the data [13].

4 Three-Dimensional Coulomb Systems

It is well known that Coulomb systems in three dimensions (3D) and oscillator
systems in four dimensions (4D) are closely related to each other [22,23]. This
property has been exploited in many ways; in particular it was one of the
clues for the solution of the path-integral for the hydrogen atom by Duru and
Kleinert [23]. One recent example is a simplified analysis of the large-order
behavior of weak-coupling expansions for perturbed Coulomb systems [2,3].
Here we shall concentrate on strong-coupling expansions which are usually
more difficult to derive. Specifically we consider the 3D Coulomb system
with the Hamiltonian

1 1
Ho = -p* — - , 10
c=gb" — _tr (10)
which is related to the 4D anharmonic oscillator with the Hamiltonian
1 2
H=5p’+ %XQ FAGP)2 (11)

In particular the ground-state energies of the two systems can be mapped
onto each other. If E denotes the ground-state energy of Heo and € is the
ground-state energy of H, then the relation reads [2]

e=¢€(w,\) =1, (12)
with

w?=—-E/2, A = g/16. (13)
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By simple scaling arguments the energy F of the Coulomb systems is easily
seen to possess a weak-coupling series expansion in powers of g,

E=FEy+FEig+ E:g> + ..., (14)
and a strong-coupling expansion of the form
E=g%3 [ao+alg_1/3+agg_2/3+...} . (15)
Similarly, for the 4D anharmonic oscillator the weak-coupling expansion reads
e=wleo+e(Mw®) + (AW +...], (16)
and the strong-coupling expansion takes the form

€= \/3 [Oé(] + ozl()\/cu?’)d/3 + ag()\/wg)74/3 + .. ] . (17)

4.1 4D Anharmonic Oscillator Strong-Coupling Expansion

To calculate the strong-coupling coefficients a, in (15) by using the rela-
tions (10)-(13) we first have to derive the strong-coupling expansion of the
4D anharmonic oscillator. Here this task is accomplished by means of vari-
ational perturbation theory as described in the previous section for the one-
dimensional case. In four dimensions the necessary input information, which
is the weak-coupling perturbation coefficients €;, can also be easily gener-
ated to very high orders by applying recursion relations first discussed by
Bender and Wu [14]. The present calculation is based on an expansion up
to order 290. The resummation scheme of variational perturbation theory
then yields again exponentially fast convergent sequences aELN) for the strong-
coupling coefficients v, and, as discussed above, their accuracy may be fur-
ther improved by applying standard extrapolation techniques such as Wynn’s
e-algorithm [20]. This procedure was applied [24] to obtain the expansion co-
efficients shown in Table 2.

4.2 3D Coulomb Strong-Coupling Expansion

By making use of the relations (12) and (13) it is straightforward to express
the expansion coefficients for the Coulomb system in terms of the expansion
coefficients for the anharmonic oscillator. For the mapping between the weak-
coupling series see, e.g., Ref. [2]. Similarly, by inserting the strong-coupling
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Table 2. Coefficients oy, of the strong-coupling expansion (17) for the ground-state energy
of the 4D anharmonic oscillator (11). The symbol # denotes the number of digits obtained.

n Op #
0 3.398150 176 027 696 746 352787969 422624 006 593 241 57 | 45
1 0.447038467415823402400410319616607 612580077 2 43
2 | —0.015633102347011 889 354 006 985 272 609 625 470 865 42
3 0.000806 409491 306496 503 927 969 548 053 909 647 16 41
4 | —0.000039561 514296 026 965992 526 411 214 682179 66 41
) 0.000001 484 265 174 534 240244 510299 896 097 807 89 41
6 | —0.000000013 262160 340 168 018 805647 156 427 568 43 41
7 | —0.000000004 230 227 654 282 595 813 731 333 132 587 68 41
8 0.000000000479 462248 736079997 207517 503 8956 40
9 | —0.000000000 029933 252179913 943 227 242901 209 2 40
10 0.000000000000 777862 757469 125859005974 5224 40
50 ~ 6 x 10756 57

expansion (17) into (12) and using (13) to replace w and A by E and g, we
obtain

. . E [ EY 16'/3 .
Oco-l-alm-l-az m +"'—91Ta (18)
where
. 162/3 i

are rescaled strong-coupling coefficients of the anharmonic oscillator. Next

we insert the strong-coupling expansion (15) of F and equate equal powers

—-1/3

of g . By defining the auxiliary sums
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Table 3. Coefficients ay, of the strong-coupling expansion (15) for the ground-state energy
of the 3D Coulomb system (10) with gr-perturbation. The symbol # denotes the number
of digits obtained.

n an, #
0 1.855 757081 489238479 | 19
1| —1.05186650108713224 | 18
2 | —0.186184 0393014212 16
3 | —0.036 881399 705 264 15
4 | —0.003 821 866 269 00 14
) 0.000 631 796 785 12
6 0.000 303 537 651 12
7 0.000 008 501 572 12
8 | —0.000022637496 12
9 | —0.00000497549 11
10 0.000001 184 37 11

where (Z) denotes the standard binomial coefficient, this leads to the equa-
tion
So =0, (21)

which determines ag as one of the roots of Sy, and in addition to a set of
recursive relations for the higher coefficients ay, with & > 0,

a; = 161/3/51,

ag = —a?Sg/Sl,

as = —(2(11(1252 + azl”S3)/Sl, (22)

ag = — [(ag + 2a1a3) S + 3a3ayS3 + a‘llSA‘] /S1,

as = — [2(a1a4 + azasz)Ss + 3(a?a3 + a%al)Sg + 4a?a254 + a?S5] /51,
and so on.

By inserting the strong-coupling expansion coefficients for the anharmonic
oscillator into Eq. (20), compiled in Table 2, it is now straightforward to solve
(21) for ag and then to evaluate the explicit expressions (22). The results up to
the 10th order in g~ '/3 are collected in Table 3. By using a different method,
Ferndndez [25] obtained: ag = 1.855 75708149, a; = —1.0518665011, as =
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—0.186 184039 3, az = —0.036 8813997, and a4 = —0.003 821 866 3.

4.3 Expansion around go with E(go) =0
Another solution of (18) is obviously given by

E=0, (23)
go = 16/aj = 0.407748 . ... (24)

Here ap = 3.398150. .. was used from Table 2. The numerical value (24) is
thus the coupling constant for which the ground-state energy of the perturbed
Coulomb problem (10) assumes the special value zero. This may be used as
the starting point for a systematic expansion of the form

E =b1(9/g0 — 1) +b2(g/g0 — 1) + ..., (25)
with
1o 2/3
= ——— 2
bl 3d1g0 3 ( 6)
G b2
by = —EF7 (27)

and so on. Using the numbers for «, given in Table 2 this leads to
b1 = 0.438855... and by = —0.038886.... A comparison of this “(g — go)”-
expansion with the strong-coupling series is shown in Fig. 3. Notice the very
good agreement even for relatively small coupling constants g.

5 Conclusions

Variational perturbation theory is a perfect tool for converting the divergent
weak-coupling perturbation series of anharmonic systems into a sequence of
exponentially fast converging approximations for the strong-coupling expan-
sion. For the anharmonic oscillator, the empirically observed convergence
behavior with superimposed oscillations can be explained by identifying the
relevant singularities in a dispersion integral representation. A combination
of variational perturbation theory with the mapping of 3D Coulomb onto 4D
oscillator systems allows to compute with high accuracy the strong-coupling
expansion for the ground-state energy E of a perturbed Coulomb system.
As a by-product of this approach, a novel expansion around the coupling
constant g defined by E(gg) = 0 can also be derived.
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Figure 3. Comparison of strong-coupling and (g — go)-expansions for the ground-state
energy E of the Coulomb system (10).

In order to focus on the main points, I have here illustrated the basic ideas
of variational perturbation theory with rather simple examples from quantum
mechanics. The approach is, however, by no means limited to quantum me-
chanics only. In fact, in the past few years many fascinating applications
to field theoretic models and critical phenomena, in particular to the precise
calculation of critical exponents, have been worked out by Kleinert and his
collaborators. Since these applications are by now far too numerous to be
reviewed in this contribution, I refer the reader to several other articles in
this chapter of the Festschrift dealing with the most successful directions of
this ongoing line of research.
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