Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

TIME-TRANSFORMATION APPROACH TO Q-DEFORMED
OBJECTS

A. INOMATA

Department of Physics, SUNY-Albany, Albany, NY 12222, USA
E-mail: inomata@albany. edu

Time-transformations in path integrals are revisited. In particular the time-depen-
dent coordinate transformation associated with the global time-transformation is
discussed and applied for deriving the propagator of a g-deformed object.

1 Introduction

Duru and Kleinert [1] were the first to publish a paper on the time-
transformation applied to a path integral. More specifically, they calculated
a path integral for the hydrogen atom by using the time-transformation of
Kustaanheimo and Stiefel [2] and succeeded for the first time in obtaining the
Coulomb propagator from Feynman’s path integral. Feynman asserted in his
1949 paper [3] by deriving Schrédinger’s equation from the path integral that
the path integral approach is equivalent to the standard canonical approach.
However, the path integral remained incapable of solving the hydrogen atom
problem until Duru and Kleinert made a breakthrough by bringing the time-
transformation into the path-integral calculation.

After the success in the Coulomb problem, many authors have employed
various time-transformations to solve other problems which can be solved
by Schrédinger’s equation but had not been solved by path integration [4].
Feynman’s path-integral method, if time-transformations are appropriately
used, is indeed capable of producing exact solutions for many integrable sys-
tems. In this manner, Feynman’s approach is shown to be as powerful as
the standard canonical approach in obtaining exact results. However, it is
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as yet unclear whether the time-transformation technique is effectively appli-
cable to other nontrivial problems. In this paper, we attempt to utilize the
time-transformation technique in dealing with g-deformation.

Time-transformations, ¢ — s, pertinent to path integrals in nonrelativistic
quantum mechanics, may be expressed in the form,

ds = F[e(t), 1] dt, (1)

which may be classified into two types: global (holonomic) transformations
and local (non-holonomic) transformations [5].

A holonomic time-transformation with F' = dg~!/dt takes the time pa-
rameter ¢ into a new “time” parameter s by

s=g ') or t=g(s). (2)

In this case, the new parameter s is globally meaningful as the time parameter
t is. An important example is the time-transformation considered by de
Alfaro, Fubini, and Furlan [6], and by Jackiw [7] in combination with a time-
dependent conformal coordinate transformation which will be discussed in
Section 2.

A non-holonomic time-transformation for which Eq. (1) may be integrable
along a certain path is generally significant only for an infinitesimal time
interval. The time-transformation of Kustaanheimo and Stiefel [2], used
for the path integral of the hydrogen atom, is a prototype of local time-
transformations. The transformations used in carrying out path integration
for exact results are mainly of the non-holonomic type.

In Section 2, we focus our attention on the global time-transformation
in combination with a time-dependent conformal coordinate transformation.
In Section 3 we use time-transformations to analyze g-deformed objects and
derive the propagators of the g-deformed free particle and of the pulsed har-
monic oscillator.

2 Time-Dependent Conformal Transformations

The time-dependent conformal transformation (TDCT) is an isotropic scale
transformation of coordinates from r to R:

r(t) = R(s) f(s), (3)
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associated with a global time-transformation

t=g(s). (4)

In the above we assume that g(s) and f(s) are both well-behaved single-valued
functions of s and mutually related by

£2(s) =9 (s), (5)

where 9= dg/ds.

To see how TDCT works in a path integral [8], we consider a particle of
charge e and mass M under the influence of a scalar potential V(r) and a
vector potential A(r) such that A(r)-r = 0. Upon application of TDCT, the
action integral for the system,

t/l
S t) = / B]Vh"2 + EA(r) -1 —V(r)| dt, (6)
# C
transforms into
S<t”7 t/) = S0 (8”, sl) + 5(5”7 Sl)a (7)

where s’ = g71(t') and s” = g~!(¢"). The first term is a quantity depending
only on the end point values,
1 f SN
S(J(SN)S/) =5 lMﬁQ_‘| ) (8)
2 f
S/
which does not contribute to the equation of motion. The second term is the
principal part of the new action,

"

(s, 8 = / EM}"{? +OAR- ‘N/(R,s)} ds )

with
A(R,s) = f(s)A(fR,9), (10)
VR, s) = f2(s) V(r) + %Muﬂ(s) R, (11)

W)= (F f=2F )/ 12 (12)
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If the original vector potential is given in the form A(r) = a(f, ¢)/r with
a-r = 0, the vector interaction term remains form-invariant: A -dr = A -dR.
As is apparent from (11), TDCT, when applied to the scalar potential V(r),
generates an extra term which has the form of the time-dependent harmonic
oscillator. Thus, for instance, if both the vector and scalar potentials are
absent, TDCT converts the action of the free particle into that of a time-
dependent harmonic oscillator. Or conversely, the inverse of TDCT reduces
the harmonic oscillator to a free particle.

Next we take this transformation scheme to quantum mechanics via the
path integral. The propagator corresponding to the action (6) is

rl,:r(tl, .
K", t";0' t) = / ¢S/ pr. (13)

r’'=r(t")

It can be shown explicitly by the time-sliced calculation [8] that TDCT
changes this propagator into

]('(rl/7 t”; I‘17 tl) — (f/f//)—?,/z eXp[iSO(SII, 5’)/h] R(RIIY S”; R’, Sl)7 (14)

where

B R//:R(S/I) -

KR ¢";R/,s) = ¢"S/" DR. (15)
R/=R(s')

Therefore the transformed propagator can be calculated directly by substi-

tuting (3)-(5) as

[N((RH, S”; RI, S’) — (f/f//)3/2 eXp[—iSO(SH, S/)/h] K(I‘”,t”; I‘I, t,)|TDCT- (16)

As an example, let us take the Alfaro-Fubini-Furlen-Jackiw (AFFJ) transfor-
mation [6,7]:
tan(ws)
r(t) = R(s)sec(ws), t=—-—-. (17)
w

Apparently f(s) = sec(ws) and g(s) = w! tan(ws) satisfy the condition (5).
Under this transformation, the action integral for a free particle (A = 0 and
V = 0) takes the form Sy(s”,s") + S(s”, s") with

Sols".) = 5M [R2(") ~ R3(s")] (18)
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and
Sl o . 1 52 1 22
S(s",s") = §MR - i]VIw R?| ds. (19)
S

’

The last action is the one for the simple harmonic oscillator. Since Sy does not
contribute to the equation of motion, the AFFJ transformation (17) converts
the free particle into a harmonic oscillator [9]. The direct substitution of (17)

via the formula (16) into the free particle propagator,

M 3/2 iM (" — I‘/)2
K(free) "o Y =
(7,257, 1) {ZWih(t” —t’)] eXp[ 20" — 1) } ’

leads to the propagator of the harmonic oscillator,

_ M 3/2
K(osc) (RH, S”; R/, S/) _ |: w . SI)J

2mih sinfw(s
tMw
2R sinfw(s” — «

xexp{

In this process, we have utilized the following identities [9],

2 2
Asec’at B sec” § = (A + B) cot(a — 3) + A tana — B tan 3,

tan o — tan 3
seca sec 3
tana — tan 8

= csc(a — f).

Other examples can be found in Refs. [8,10].

3 Global Time-Transformation in g-Deformation

o] {(R’2 +R"?) cos[w(s” — §')] — 2R'R”}} .

(20)

(21)

(22)

(23)

In this section, we study global time-transformations related to g-deformation.

3.1 The g-Free Particle

Let us start with the Newtonian free particle in one dimension which obeys

the difference equation

z(t+7T)—2z(t) +z(t—T) =0,

(24)
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where T is any finite-time period. Obviously its solution is given by
x(t) = at + b, (25)

where a and b are constants.
Now we apply to the free particle the following transformation [11],

z(t) = y(r) =a(r), t—r=¢"T, (26)
where g # 0 and ¢ # 1. The new variable,
y(r(t)) = ar + b= ag®/T +b, (27)
does not satisfy (24) any longer but obeys the equation

q 'y(a®r) — (¢ +q Dy(r) +qylq *7) = 0. (28)

While the difference equation (24) dictates the time-evolution of z(t) under
the discrete time-translation t — 7' — t — t + T, the new difference equation
(28) stipulates the progression of y(7) under the time-scaling ¢ 27 — 7 —
>

In fact, the difference equation (28) is equivalent to the g-deformation
counterpart of the force-free Newton equation:

D?y(7)
Dt2

=0, (29)

where Dy(7)/D7 is the symmetric Jackson g-derivative defined by [12]

Dy(r) _ y(gr) —ylg~'7)
DT (q—qHT (30)

Thus the scaling factor ¢ appearing in Eq. (26) turns out to be the same as
the deformation parameter.

In this way, the time-transformation (26) converts the Newtonian free
particle to the ¢g-deformed object obeying Eq. (28) or Eq. (29) which we call
the ¢g-deformed free particle or the ¢-free particle in short.

In order for the new time parameter 7 to be real for any ¢, the deforma-
tion parameter ¢ must be a positive real number. In this case, the trajectory
described by (27) is also real and continuous. Thus the g-free particle moving
along a real continuous trajectory is characterized by a positive real param-
eter ¢ € RT. If, however, the object is allowed only to hop along a real
discrete sequential trajectory {y(s(nT))} associated with discrete periodic
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time-translations ¢ = nT (n € N), then ¢ may be negative. Thus, for the
proper ¢-free particle and the hopping ¢-free particle we have ¢ € R/(0,1).
If we let @, = x(to + nT) (n € Ny), then Eq. (24) may be written as the
recursion relation
Tpt1 — 2Tp + Tp—1 = 0. (31)
Correspondingly, defining 7, = gon7o with 79 = ¢*/T
sion relation obeyed by v, = y(7,):

, we obtain the recur-

a Yni1— (@ + ¢ Yn + qyn1 =0. (32)

3.2 The g-Object
Next we apply the time-dependent coordinate transformation
y(r) = Q(r) =7""2y(r) (33)

to the g-free particle. Under this scale transformation, the difference equation
(28) becomes

Q(PT) — (a+ ¢ HQ(T) + Qg 1) = 0. (34)

As is evident from Egs. (27) and (33), the solution for this equation is given
by

Q(r) = ar'/? + br /2, (35)

which may be rewritten as

T2 — 712 /2 | —1/2

where A = (a — b)/2 and B = (a + b)/2.

Then it becomes clear that Q(7) may be related to the coordinate variable
x(t) of the Newtonian free particle via a time-dependent scale transformation
x(t) — Q(s) associated with the time-transformation ¢ — s € R

1/2 JT | —s/T\—1 ¢/ —q /7
z(t) =2[(c/T)Ing]7Q(s)(¢*" +¢ "), t= CT T (37)
where
qs/T _ q—s/T ) .
Qls) = Qlrte)) = (A T T B) @), (38)
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and c¢ is a constant to be chosen such that the condition (5) is met.

Although we have assumed ¢ # 1 in Eq. (26), we may remove the as-
sumption if we define Q(s) by Eq. (37). It is obvious from Eq. (37) that
s — t and Q(s) — x(t) in the limit ¢ — 1. The difference equation (34) also
reduces to the equation for the free particle (24) when ¢ — 1. Furthermore,
Eq. (34) indicates that the function Q(s) may remain to be real-valued under
the condition

g+q¢ ' eR. (39)

This condition implies either ¢ € R or ¢ € S'. In this regard, the object
described by the real-valued variable Q(s) is more general than the g¢-free
particle. We refer to this generic object subjected to the condition (39) as
the g-object.

Let s, = sg +nT and Q,, = Q(s,) where n € Ny. Then it is evident that
@, satisfies the relation,

Qn+1 - (q + q_l)Qn + Qn—l = Oa (40)

which is nothing but the recursion relation obeyed by the Chebyshev polyno-
mials,

Tn(cosp) = cos(ny) and  Uy(cosp) = sin(ny), (41)
with ¢ = e (¢ € C). Thus the time-evolution of the g-object is a real

Chebyshev process (with ¢ + ¢~ € R).

3.3 The Number Representation

The deformed harmonic oscillator of Biedenharn [13] and Macfarlane [14] is
a well-known ¢-deformed object based on the commutator

aal — gata = ¢V, (42)

In the Fock space F = {|n) : n € Ny}, the operators N, a'a and aal are
diagonalized with the diagonal elements, n, u, and 1u,;, respectively; a'
and & shift the energy states as

iln) = EnrTln+ 1), aln) = Vi |n - 1). (43)

Here u,, is often called the structure function of the algebra (42).
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By using Eq. (42) it is straightforward to show that the structure function
u, satisfies the recursion relation

Upt1 — (@ +q up + up_1 = 0. (44)

Surprisingly this recursion relation coincides with Eq. (40). However, we do
not hastily conclude that the g-object is a g-deformed harmonic oscillator.
The deformed oscillator is characterized by a Hamiltonian given as a function
of @ and &', whereas the g-object has nothing to do with a Hamiltonian. Here,
associating |n) with the position of the g-object at a time ¢t = to+nT’, we just
point out that the discrete time-evolution of the g-object can be represented
by the transition of the Fock states.

3.4 The p-Oscillator

The pulsed harmonic oscillator (p-oscillator) is defined here as a free particle
which undergoes periodic pulses of Hooke’s force F(t) = —Mw?X (/T —m),
where Mw? is Hooke’s constant, T is the period of pulses and m € Z. The
symmetrized action of this system for a time interval containing a single pulse

is given by
_ M - 2 1 2 2 2
S(tm,tm-1) = 2T(Xm Xm-1) 4Mw T(Xo+ X 1) (45)
Calculating the canonical momenta by
P, = 08/0X;, =(M/T)( Xm — Xm-1) — (Mw?T/2) X,
(46)
Pp_1=—-0S/0Xpm_1=(M)T)( Xm — Xm_1) + (Mw?T/2) X1,
we find the area-preserving linear map in phase space:
X = Xp 1+ (T/2M)(1 — w?T?/4)" (P, + Pr1),

(47)

P, =P,_1— (Mw2T/2)(Xm + mel)-
It is interesting to notice that both X,,, and P,, satisfy the recursion relation
X1 — (2T X + X1 = 0. (48)

Obviously the time-evolution of the p-oscillator is also a Chebyshev process
with

= cosfl(l — w2T2/2). (49)
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If 0 < w?T? < 4, then ¢ € R and the discrete trajectory {X,,} oscillates
sinusoidally. If w?T? < 0 or 4 < w?T?, then ¢ is a complex number, and
the solutions are no longer physical and do not represent the p-oscillator.
Therefore the proper p-oscillator is a g-object with ¢ € S, i.e. ¢ =e™% (p €
R).

4 The Propagator for the g-Object

Here we utilize the time-dependent scale transformation (37) to derive the
propagator for the g-object and discuss special cases.
4.1 The g-Object
Letting ¢ = 4T/, we put the transformation (37) into the form,
xp = Qpsec(inlnq), t, = (iT/Inq) tan(inIn g). (50)

Then, making use of the identities (22) and (23) once again, we can implement
the transformation (50) to the one-dimensional free particle propagator for
the time interval t,, — tg = nT,

M 1/2 iM (z,, — z0)?
K(free) nl)=|———— —— 51
(&n, @i ) Lwih(tntOJ exp{?h tn —to ] o

to find the propagator for the g-object

Mg—qgY) 17
2mwihT (q" — g~ ™)

Klamebiee (@, QoinT) = {
. o1
corp | (@4 QD@+ — 4000 | (52)

where ¢ + ¢! € R.

4.2 The p-Oscillator

For ¢ = e € S! with ¢ = cos™1(1 — w?T?/2), we let Q, = X, € R in
Eq. (52). Then the propagator for the proper p-oscillator is given by

M Uy (cos @) 1/2

K®=o)(x  XonT)=|— 1
(X, Xo; nT) 271ihT Uy, (cos ¢)
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iM U, (cos @) 9 9

X — (X X5)Tn —2X, X0}, 53

XD | ST (oae oy (X X8 (cos ) o}, )

where T, (cos¢) and U,(cosy) are the Chebyshev polynomials given in
Eq. (41). The caustics of the propagator correspond to ¢" = ¢!™™ (m € Z).
In the limit 7' — 0 (¢ — 1) and n — oo, such that the total time interval nT'
remains constant, Eq. (53) approaches the propagator for the usual harmonic
oscillator.

4.3 The g-Free Particle

The propagator for the T-evolution of the g-free particle is obtained by trans-
forming X,, of Eq. (52) back to y, = ¢"X,, via Eq. (50). Namely,

_ /2
> (g— Mg-qh 1
K@) (y yosnT) =
(v, yos nT) {ZWihT(q” )
Z.M(q B q_l) —2n,,2 2 n —n —
—a-d —4q My} | . (54
xeXmeT(qn_q_n){(q Yn T90)(@" +a ") —4q "ynyo}| . (54)

For the proper ¢-free particle, ¢ € R™. If we include the hopping type in the
g-free particle, then ¢ can take any real number excluding ¢ = 0. In the limit
q — 1, Eq. (55) reduces to the propagator for the usual free particle.

5 Concluding Remarks

The global time-transformations have been used to discuss g-deformed ob-
jects. The propagator for the generic g-object is also obtained, which contains
those of the pulsed harmonic oscillator and the ¢-free particle as special cases.
Other aspects of the path integral for the g-object will be given elsewhere [15].

It is an interesting question why the AFFJ transformation (17) can gen-
erate the discrete energy spectrum for the harmonic oscillator out of the
continuous spectrum of the free particle. By the g-analysis, it becomes clear
that the AFFJ transformation in the g-version (50) is a sort of analytical con-
tinuation through ¢. As the bound and the continuous states of the Coulomb
problem are related to the compact group O(4) and the non-compact group
0O(3, 1), respectively, the ¢-free particle with ¢ € R™ is analytically continued
to the p-oscillator with ¢ € S*. The generation of the discrete spectrum can
be ascribed to the compactification of the space belonging to the deformation
parameter q.
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