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It is well known that one can approach problems in electrodynamics at either the
macroscopic or microscopic level. However, we have less knowledge about the
same approach in the case of semiclassical quantum mechanics. This case will be
discussed here.

1 Introduction

When dealing with simple optical phenomena such as transmission and re-
flection, one can proceed in two quite different but totally equivalent ways.
One is macroscopic and utilizes the solution of the Maxwell equations subject
to appropriate boundary conditions. The second is microscopic. It is based
on the multiple scattering series and follows a simple ray through all possible
paths to its final destination. This procedure offers a very visual and a much
clearer intuitive picture for what is taking place. The equivalence of macro-
scopic and microscopic techniques in this case is well known. Less familiar
to many physicists is that an equivalent microscopic approach can be used
in the case of semiclassical quantum mechanics. This will be discussed here.
Our results are implicit in the work of other authors [1], so the presentation
will be more of a didactic nature.

2 Semiclassical Methods

It is possible to treat quantum mechanics via macroscopic and/or microscopic
methods, at least in the situation that the action divided by A is large — the
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so-called semiclassical limit. The macroscopic procedure is well known as the
WKB technique, the basic idea of which is that for a slowly varying potential
V(x), a stationary state solution can be written as [2]

bwks(@,t) ~ E%;emo{icéjk@u¢ﬂ—4%>}, (1)

with the local wave number

k(z) = \/2m(E — V(z)). (2)

This approximation is valid when refraction dominates over reflection, or
equivalently when the change in potential energy over a distance of the
de Broglie wavelength is much smaller than the local kinetic energy, i.e.

|dV/dx|

ATV

<1 . (3)
This approximation clearly breaks down at a classical turning point z = a,
where E = V(a). The usual procedure to deal with this breakdown is to use
the WKB form of the wave function except in the immediate vicinity of the
turning point, wherein a linear approximation to the potential is used in order
to match the form of the wave function. This technique is a standard one
and a prototypical problem treated via WKB is that of barrier penetration,
i.e. the case of a particle of mass m and energy E incident on a potential
barrier V(z) with maximum height such that Vi,ax > E. The results of this
procedure are well known and yield reflection and transmission formulae [3]

6—20

R=1-T= =5 (4)

with the WKB penetration factor

b
o :/ dz/2m(V (z) — E), (5)

and a, b being the classical turning points. The derivation is straightforward,
but using the connection formulae, derived from the asymptotic behavior of
Airy functions, renders this procedure somewhat in the realm of black magic,
so that one does not really develop a “feel” for the physics.

As an alternative approach, we present below a microscopic version of the
semiclassical approximation which is based upon the Feynman path integral.
The results obtained in this fashion are totally equivalent to those found via
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WKB in most cases. However, the path integral viewpoint generates a more
intuitive picture of the physics of the process under consideration and offers
ways to treat some aspects, such as the superbarrier penetration [4], which
lie outside the simple WKB domain of applicability.

2.1 Quadratic Approximation to the Propagator

In order to understand the semiclassical procedure, consider the path-integral
form of the propagator

1

D(as.tian,0) = [ Dlote]exp{ 5 Tote). 601 | ©)
Now write
x(t) = za(t) + dx(t), (7)

where z(t) is a solution of Hamilton’s equation 4 [zc1(¢)] = 0, and expand
the action in terms of dz(t). The terms linear in dz, 6% vanish after an inte-
gration by parts and use of the classical equations of motion, yielding

Dr(ws, t;21,0) ~ exp {%S[mcl(t)]} /D[&r(t)]
<o {1 [ L (m62)? = 3V aa@)E?) | ©)

as an approximate representation of the propagator. The exponential phase
factor is just the classical action, while the additional multiplicative term
is the closed path propagator for a particle of mass m moving under the
influence of the time-dependent potential 22V (za(t)) /2.

Eq. (8) is exact for a quadratic potential, but for a general potential
the semiclassical approximation involves dropping terms of higher order than
quadratic in dz, since one can show that the contribution of the quadratic
order terms to the path integral is of lower order in A than that from cubic
or higher order terms. Indeed, only the classical path survives in the limit
h — 0, and deviations dz(t) from this path are only important if the change
which they induce in S/h is of order ~ 7 or less, i.e. 625 [za] /h < 7, since
larger deviations imply a rapid oscillation of the integrand and result in a
nearly complete cancellation. We conclude that 6z ~ h'/2 so that S [z¢] /A ~
O (h7Y) and 628 [za] /h ~ O(1). However, 625 [za] /i ~ O (h*/?), implying
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that cubic and higher order terms in dx can be neglected in the semiclassical
limit 7 — 0.

The quadratic path integration over dx(t) may be performed via a clever
analyticity argument due to Coleman [5], or by other means, yielding the
so-called Van Vleck determinant (hereafter setting i = 1)

J oo {i [ Car (Gm(oate)? — 0PV wate) ) |

- <m /: dm:‘odi”(m))z. (9)

2.2 The WKB Propagator

We can now demonstrate that this quadratic approximation to the path inte-
gral is, in general, completely equivalent to the WKB approximation [6]. In
order to make this connection, consider the propagator written in terms of
WKB solutions of Eq. (1):

m i *
D (xq,t;21,0) = g/dEe zEtQ/JWKB(:Uz,E)z/JWKB(:L‘l,E), x9 > x1, (10)

where

wp(e. B) = i exp i [ k). (1)

with the local wave number (2). The energy integration in Eq. (10) can be
performed via the stationary phase approximation, wherein one approximates
an integral of the form

° i 2mi i
J = [ dE ¢ F)g(E) ~ mg(Eo) e'f (Fo), (12)
with Ep defined by the condition f'(Ep) = 0. In our case

F(B) = / " o Im(E= V(@) — Et, (13)

1

and the stationary phase energy FEj is found by requiring

UE) _ [ ] m
OZW:/M dx m—t. (14)
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Since /2(E—V(z))/m = &a is the classical velocity, we find ¢ =
f;f dx' /i (2") as the defining equation for Ey, i.e. Ey = Eg, where Eg
is the classical energy for the trajectory xi(t) connecting (x1,0) and (z2,t).
Also, since

1

7 _ _1 R m : _ _i i .3
f"(Ea) = 2/361 dx <—2(EC1—V(ZL"))3> m dei”(z) , (15)

the WKB propagator becomes

1/2
m
D(x2,t;21,0) = z -
(2 10) (27riicl(t)ic1(0) fmf dx C1'3013@))

T2

X exp (z/ dx k(x) — iEC1t> , (16)
1

which is identical in form to the quadratic approximation to the path integral,

since the prefactor is obviously the same, while the classical action can be

written as

Sleatt)] = [ a¢ (Smit@) - via@)) = [t (mi2) - )

T2 T2
= / dzmic(x) — Eqt = / dz/2m (Ey —V(x)) — Eqt.  (17)
We conclude that any problem which can be treated via WKB methods can
equally well be handled using path-integral techniques in the quadratic ap-
proximation.

2.3 Barrier Penetration: Semiclassical Approach

An example of such a problem is that of barrier penetration. We shall demon-
strate here how the same results found via WKB can be derived via semiclas-
sical path-integral methods. In order to do so, it is necessary to generalize
the idea of a classical path. In the case of barrier penetration a conventional
classical trajectory connecting points x1, xo far to the left or right of the bar-
rier, respectively, and with classical energy less than the height of the barrier,
does not exist since the particle must be completely reflected. Nevertheless,
there do exist trajectories connecting the two space-time points (z1,0) and
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(x2,t) which satisfy

. av
mie = ———

dr| ’ (18)

Tl

provided we allow the time ¢ to become complex, and such paths can be
chosen to have a real classical energy E < Viax. In fact, for given x1, x2, E,
there exists a denumerably infinite set of such paths which can be labeled by
their propagation “times” with ¢, n =0,1,2,...:

t(”):/:—i—/bmdm,/W—i@n—i—l)/ﬂbd:ﬁ,/m . (19)

The propagation from x; to x2 can be considered as occurring in three succes-
sive steps. First the particle travels from the initial point x; to the left-hand
classical turning point a in the real time interval

Ata_/g:dx‘/ﬁ , (20)

and then makes 2n + 1 traversals of the interval between a and b in pure
imaginary time

b
(n) _ _ . / m

Finally, the particle propagates from the right-hand turning point b to a3 in
the real time interval

Atb:/bmdm,/m . (22)

The total temporal interval is then t(") = At, + Atl(n) + Aty, as given in
Eq. (19).

Physically, the different values ¢ (n = 0,1,2,...) correspond to the
possibility of internal reflections from the walls inside the barrier. This in-
terpretation follows from writing Newton’s equations in terms of imaginary
time 7 =it

d*x >z dV(x)

e T . 23
M T T e dr (23)
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Equation (23) describes the motion of a classical particle of mass m moving
inside a potential well —V (x). The particle can travel from turning point a
to turning point b in an infinite number of ways, corresponding to the direct
path plus an arbitrary number (n = 1,2,...) of complete loops from a to b
and back again to a. Thus the “trajectory” labeled by t(?) represents a path
which enters the forbidden region at point a, “propagates” directly to turning
point b and exits. The path labeled by ¢(!) passes into the barrier at point
a, “propagates” to b where it is reflected, returns to a where it is reflected
again, and finally “propagates” to point b where it exits the barrier. Similarly,
paths labeled by ¢(") correspond to “trajectories” with 2n + 1 traversals of
the forbidden region before final exit at point b.

Obviously these “classical” paths cannot be directly utilized to produce a
semiclassical propagator. They become relevant, however, if the propagator
is analytically continued through the introduction of its Fourier transform?

[ee]
D(:Eg,xl;E):/ dt e’P'D(xq,t;21,0) . (24)
0

In fact, it is this energy-space form of the propagator which is relevant for
calculating the barrier reflection/transmission properties, since wavepackets
are constructed to have fixed energy.

The form of D(xs,t;21,0) to be used here is given by

) 1/2
D 7t; 30 = . To
(@2,821,0) <2m k(wa)k(en) 7 do k3(:z;)>

T2
X exp (z/ k(x)dx — iEt) . (25)
1

The integral f;f k(z)dz is to be understood as a line integral that can loop
around the edges of the barrier 2n times (n = 0,1,2,...). In the immediate
vicinity of a turning point, the quadratic approximation to the propagator is
no longer valid, and an additional factor A = i/2 is produced each time one
passes through such a point, as shown by careful study of the turning point
region [7]. Thus for the “classical” path labeled by integer n, we interpret

/:2 dr k(z) = /9: + /:2 dr k(z) +i(2n+1) /ab k(z)dr —i2nIn ), (26)

2The lower limit of integration is set by the feature that the Feynman propagator
D(za,t;x1,0) is defined to vanish for ¢ < 0 by the ie prescription.
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where s(z) = \/2m(V(z) — E) and where the energy E(t() is defined im-
plicitly in terms of the time ¢t via

Lo oy o

Here the turning points a and b are functions of E(mz,xl, () ), but )\ is
independent of energy (and time).

The Fourier transform is performed via the stationary phase approxima-
tion. Writing D(xa,t;21,0) = p(t) ') (where we have suppressed the de-
pendence upon s, 1) we have

Diaz.ariB) = [ dec' B0 ) (28)
0
and the stationary phase point t is determined via

0= gt(Et—HzS()) §t<Et+/:2k(m)det)

1

. OE (™ 0k OF
=E—E(t)—t— dr— — . 29
0 G+ [ ange (29)
However, t — [ dzdk/0 E = 0, since this is the equation which defined E(t)
in the first place. Thus the stationary phase point  is defined via E = E(f).

Finally, using
1 @2 !
2 -3
=————F=(m dz k (:E)) ,
t=t f * dx o ( Al

92 OF
OE?2
(30)

oot

t=t

(Bt + ¢(t))

o2
the stationary phase approximation yields

D(wa,21: E) = <#]:<Il)>l/2exp {z/: k(z) d:p}, (31)

where the integration is understood in the sense of Eq. (26).

As the (") are complex, the stationary phase procedure requires that the
path from ¢t = 0 to t = +0o0 is deformed into the complex plane in such a way
that it passes through each t) with n =0,1,2,... . We then find

D.’L'Q,.T], ZD( T2,T1; )
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~ (i) oo ([ [ o)
XZ)\Q"eXp< (2n+1) /a (x)dm) : (32)

The contribution from paths involving n > 1 are exponentially suppressed and
of questionable accuracy, as the corrections to the semiclassical approximation
to the path integral could well be larger. Nevertheless, it is important to

include the effects of these “interior bounce” solutions since only then we
have a unitary and fully consistent picture of the transmission and reflection
process which conserves probability. Thus calculating the propagator for
transmission, as given above, we can perform the summation over n, yielding

)= ) o0 [ 4 ) e

(33)
where o = fab k(z) du.

We see that this path-integral approach to the semiclassical approxima-
tion allows a very appealing and graphical picture of the transmission process.
Instead of the sum over all possible paths required in calculating the complete
path integral, the semiclassical approximation utilizes a sum over all “classi-
cal” paths connecting the initial and final points. (Here “classical” is used in
the sense defined above, wherein analytic continuation into the complex time
plane is permitted.) The form of the propagator can be found by using the
simple rules:P

i) Propagation from z; to z3 in a classically allowed, forbidden region pro-
duces a factor

exp{i/: k(w)dm} , exp{—/: H(m)dl‘}7 (34)

respectively;
ii) Reflection from a classical turning point within a classically forbidden
region yields a factor A = i/2, as discussed in Ref. [7].

bFor completeness, it should be noted that there exist corresponding phases exp(+in/4)
which arise upon transmission through a barrier. However, these do not play a role when
the transmission or reflection probabilities are determined and therefore, for simplicity, will
be omitted here.
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In order to deal with the corresponding reflection coefficient, we require one
additional rule

iii) Reflection from a classical turning point within a classically allowed re-
gion yields a factor n = —i, according to Ref. [7].

The propagator for the reflection process may then be constructed by taking
x1, %2 both to the left of the barrier and including all possible “classical”
trajectories:

i) Propagation from z; to the left-hand wall at = a followed by a reflection
and propagation back to xs;

ii) Propagation from z to the left-hand wall at « = a followed by transmis-
sion into the barrier, reflection from the right-hand wall, transmission
back to x = a and then propagation from x = a to xs, etc.

The total contribution to the propagator is then

D2, 313 E) = (#}%)1/26)@ <Z/I +i/;2k(x) dz) Fo35)

with

)\6—20'

1—M2e=20’ (36)

o
f = + Z/\Qﬂ«kl ef(2n+2)a =7 +
n=0

where o is defined in Eq. (5). The connection with the transmission and
reflection coefficients

R=|r(E))> and T =[t(E) (37)

can now be made via the identifications

m2 1/2
D By = —— t(E b
($2,1‘1, ) <k(’1’2)]{'(7‘1)> ( )7 T K a, < zg,
m2 1/2
D By = ———— E , 38
(m27xla ) (k($2)k($1)> T( )) 117I2<<a, ( )
and we find, using Egs. (32) and (35),
6720' 6720

p— 2 J—
T =[iE)" = 1 N2 (14 le oy
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Ne—20 |2 1—leg—20\?
_ 2 _ _ a
R= b0 = o+ 2| = (1) (39)

in complete agreement with the corresponding WKB expressions, Eq. (5).

3 Conclusions

We have seen how the problem of barrier penetration can be handled equally
well via macroscopic (WKB) or microscopic (semiclassical path integral) tech-
niques. Similarly, it is straightforward to understand how other classic prob-
lems usually treated via WKB, such as « decay [8], can be derived micro-
scopically. The combination of macroscopic and microscopic approaches can
provide an improved understanding of the problem and its solution.
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