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The influence of a local anisotropy of random orientation on a ferromagnetic phase
transition is studied for two cases of anisotropy axis distribution. To this end a
model of a random anisotropy magnet is analyzed by means of the field theoretical
renormalization group approach in two-loop approximation refined by a resum-
mation of the asymptotic series. The one-loop result of Aharony indicating the
absence of a second-order phase transition for an isotropic distribution of random
anisotropy axis at space dimension d < 4 is corroborated. For a cubic distribution
the accessible stable fixed point leads to disordered Ising-like critical exponents.

1 Introduction

Modern understanding of universal properties of matter in the vicinity of crit-
ical points is mainly due to the application of renormalization group (RG)
ideas [1]. Applied to the problems of condensed matter physics in the early
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1970s, the RG technique proved to be a powerful tool to study critical phe-
nomena. For example, expressions for critical exponents governing the mag-
netic phase transition in regular systems are known by now with record accu-
racy both for isotropic [2] [O(m) symmetrical] and cubic [3] magnets. The RG
approach also sheds light on the influence of structural disorder on ferromag-
netism. In the present article we will apply the field theoretical RG approach
to study peculiarities of magnetic behavior influenced by disorder in a form
of random anisotropy axis [4]. It is a special pleasure for us to dedicate this
paper to Prof. Hagen Kleinert on the occasion of his 60th anniversary. His
contribution to the field is hard to be overestimated.

Although an influence of a weak quenched structural disorder on universal
properties of a ferromagnetic phase transition has already been a problem of
intensive study for several decades, there remains a number of unsettled ques-
tions. Here, one should distinguish between random site, random field and
random anisotropy magnet. A weak quenched disorder preserves the second-
order phase transition in three-dimensional (d = 3) random site magnets [5]
but can destroy this transition in random field systems [6] for d < 4. The
situation for the random anisotropy magnets is not so clear.

Typical examples of random-anisotropy magnets are amorphous rare-earth
- transition metal alloys. Some of these systems order magnetically and for
the description of the ordered structure it has been proposed [4] to consider
a regular lattice of magnetic ions, each of them being subjected to a local
anisotropy of random orientation. The Hamiltonian of this random anisotropy
model (RAM) reads [4]

H=-> JrrSrSr — Do (irSwr)’, (1)
R.R/ R

where Sg is an m-component vector on a lattice site R, Jr r’ is an exchange
interaction, Dy is an anisotropy strength, and Zg is a unit vector pointing in
the local (quenched) random direction of an uniaxial anisotropy.

The model has been investigated by a variety of techniques including
mean-field theory [7], computer simulations [8], 1/m-expansion [9], renormal-
ization group e-expansion [10 12]. The limit case of an infinite anisotropy
has been subject to a detailed study as well [13,14]. However the nature
of the low-temperature phase in RAM is not completely clear up to now,
although several low-temperature phases were discussed like ferromagnetic
ordering [7,8], spin-glass phase [8,9], and quasi long-range ordering [15].



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Phase Transition in the Random Anisotropy Model 459

The nature of ordering is connected with the distribution of the random
variables Zg in Eq. (1). For an isotropic distribution arguments similar to
those applied by Imry and Ma [16] for a random-field Ising model bring about
the absence of ferromagnetic order for space dimensions d < 4 [12,17], whereas
anisotropic distributions may lead to a ferromagnetic order [18].

Application of the Wilson RG technique to RAM with the isotropic dis-
tribution of a local anisotropy axis suggests [10] the possibility of “runaway”
solutions of the recursion equations. Such a behavior has been interpreted as
a smeared transition. However this result was obtained in first order of the
e-expansion and remains to be confirmed also in higher orders.

Here, we will report results obtained by means of the field theoretical
RG technique in two-loop approximation refined by a resummation of the
resulting asymptotic series. We will consider two cases of distribution of the
random anisotropy axis and show that a ferromagnetic second-order phase
transition takes place only when the distribution is non-isotropic. Moreover
we will show that the RAM provides another example of a disordered model,
where the only possible new critical behavior is of “random Ising” type, sim-
ilar to the site-diluted magnets [5]. More detailed results can be found in
Refs. [19,20].

2 Isotropic Case

In order to deal with quenched disorder, one way to obtain the effective Hamil-
tonian of a RAM is to make use of the replica trick. For a given configuration
of quenched random variables #g in Eq. (1) the partition function may then
be written in the form of a functional integral of a Gibbs distribution depend-
ing on Zr. To average over configurations, one should complete the model
by choosing a certain distribution of Zg. We will analyze two cases: first the
isotropic case, where the random vector # points with equal probability in any
direction of the m-dimensional hyperspace, and second the cubic case, where
Z lies along the edges of the m-dimensional hypercube. Other distributions
may be considered as well. In the first case the distribution function reads:

p() = (/dm:z«)l: % 2)
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Following the above described program, one ends up with the replica n — 0
limit of the effective Hamiltonian [10]:

1 - = 2 5
Hae = | ddR{§ (0% B+ G| ool oo 3 1671

a=1

+wo D D RSele) (3)

a,f=11,j=1

where 102 and ug, vg, wo are defined by Dy and familiar bare couplings of an
m-vector model, and ¢ = 5% is an m-dimensional vector, |3|*> = Y _| 62,
The bare couplings are restricted by ug > 0, vg > 0, wp < 0. Furthermore,
values of ug and wq are related to appropriate cumulants of the distribution
function (2) and their ratio equals wg/ug = —m. Note that the symmetry
of the ug and vy terms corresponds to the random site m-vector model [21].
However the up-term has an opposite sign.

In order to study long-distance properties of the Hamiltonian (3), we use
the field theoretical RG approach [1]. Here the critical point of a system cor-
responds to a stable fixed point (FP) of the RG transformation. We apply the
massive field theory renormalization scheme [22] performing renormalization
at fixed space dimension d and zero external momenta. In two-loop approx-
imation we get [19] expressions for the RG functions in form of asymptotic
series in renormalized couplings u, v, w.

As it was mentioned in the introduction, the only known RG results for
RAM with isotropic distribution of the local anisotropy axis so far are those
obtained in first order in ¢ [10]. In total one obtains eight fixed points. All
FPs with w > 0,v > 0,w < 0 appear to be unstable for ¢ > 0 except of the
“polymer” O(n = 0) FP III which is stable for all m (see Fig. 1). However the
presence of a stable FP is not a sufficient condition for a second-order phase
transition. In order to be physically relevant, the FP should be accessible from
the initial values of couplings. This is not the case for the location of FPs
shown in Fig. 1. Indeed starting from the region of physical initial conditions
(denoted by the cross in Fig. 1) in the plane of v = 0 one would have to cross
the separatrix joining the unstable FPs I and VI. This is not possible and so
one never reaches the stable FP III. As far as both FPs I and VI are strongly
unstable with respect to v, FP III is not accessible for arbitrary positive v
either. Finally, the runaway solutions of the RG equations show that the
second-order phase transition is absent in the model. The main question of
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Figure 1. Fixed points of the RAM with isotropic distribution of a local anisotropy axis.
The fixed points located in the octant u > 0,v > 0,w < 0 are shown. The filled box shows
the stable fixed point, the cross denotes typical initial values of couplings.

Table 1. Resummed values of the fixed points and critical exponents for the isotropic case
in two-loop approximation for d = 3. We absorb the value of a one-loop integral into the
normalization of the couplings.

FP m U v* w* v n
I vm 0 0 0

II 2 0 0.9107 0 0.663 | 0.027
3 0 0.8102 0 0.693 | 0.027
0 0.7275 0 0.724 | 0.027
1 | vm | 1.1857 0 0 0.590 | 0.023
v 2 | -0.0322 | 0.9454 0 0.668 | 0.027
3 0.1733 | 0.6460 0 0.659 | 0.027
4 0.2867 | 0.4851 0 0.653 | 0.028
VI 2 1.4650 0 -1.6278 | 0.449 | -0.028
VIII | 2 0.7517 | 0.7072 | -0.3984 | 0.626 | 0.031
3 0.8031 | 0.5463 | -0.3305 | 0.620 | 0.029
4 0.8349 | 0.4545 | -0.2888 | 0.617 | 0.029
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interest is whether the above described picture of runaway solutions is not an
artifact of the e-expansion. To check this, we use a more refined analysis of
the FPs and their stability, considering the series for RG functions directly
at d = 3 [22]. It is known that series of this type are at best asymptotic
and a resummation procedure has to be applied to obtain reliable data on
their basis. We make use of Padé-Borel resummation techniques [23], first
writing the RG functions as resolvent series [24] in one auxiliary variable and
then performing the resummation. Numerical values of the FPs are given
in Table 1. Resummed two-loop results qualitatively confirm the picture
obtained in first-order e-expansion: the stability of the FPs does not change
after the resummation. This supports the conjecture of Aharony [10] that
an accessible stable FP for the RAM with isotropic distribution of the local
anisotropy axis is absent. In the table, we list values of correlation length
and pair correlation function critical exponents v and 1 which are resummed
in a similar way. As they are calculated in unstable FPs, they have rather to
be considered as effective ones.

3 Cubic Case

Let us now consider the second example of anisotropy axis distribution, when
the vector &g in Eq. (1) points only along one of the 2m directions of axes
k; of a cubic lattice:
1 m
p(E) =5~ Z;[W)(.f: — ki) + 60 (& + ki) (4)
1=
The rationale for such a choice is to mimic the situation when an amorphous
magnet still “remembers” the initial (cubic) lattice structure. Repeating the
procedure described in the previous section, one ends up with the following
effective Hamiltonian which is of interest in the limit n — 0 [10]:

1 - S 2 1o
Hor = | ddR{§ (10?167 +V G|+l 4+ 3 167

a=1
tuo Y ST 620 1 Y et (5)
i=1 a,8=1 i=1 a=1

Here, the bare couplings are ug > 0, vog > 0, wg < 0. The yo term is
generated when the RG transformation is applied and may be of either sign.
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Figure 2. Fixed points of the RAM with distribution of a local anisotropy axis along
hypercube axes for v = 0. The only fixed points located in the region u > 0,w < 0 are
shown. Filled boxes show the stable fixed points, the cross denotes typical initial values of
the couplings.

The symmetry of the wg terms differs in Egs. (3) and (5). Furthermore, values
of wg and ug differ for Hamiltonians (3) and (5), but their ratio equals —m
again.

We apply the massive field theory renormalization scheme [22] and get
the RG functions in two-loop approximation [20]. As in the previous case we
reproduce the first-order e-results [10]. Now one gets 14 FPs. However, in
first order of the e-expansion all FPs with v > 0,v > 0,w < 0 appear to be
unstable for € > 0, except of the “polymer” O(n = 0) FP III which is stable
for all m but not accessible (see Fig. 2). Now the account of the 2-terms
qualitatively changes the picture. Indeed, the system of equations for the FPs
appears to be degenerated at the one-loop level. As known from other cases
in two-loop order, this leads to the appearance of a new FP which is stable
and is expressed by a /¢ series [21]. The possibility of such a scenario was
predicted already in Refs. [18]. However it remained unclear whether there
exist any other accessible stable FPs.

Applying Padé-Borel resummation, we get 16 FPs. Values of the FPs
with u* > 0,v* > 0,w* < 0 are listed in Table 2. The last FP XV in Table 2
corresponds to the stable FP of the y/z-expansion. It has coordinates with

*

u* =v* =0, w* < 0 and y* > 0 and is accessible from the typical initial
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Table 2. Resummed values of the FPs and critical exponents for cubic distribution in
two-loop approximation for d = 3. We absorb the value of a one-loop integral into the
normalization of the couplings.

*
*

FP m u* v* w Y v n

I vm 0 0 0 0 1/2 0
2 0 0.9107 0 0 0.663 | 0.027
II 3 0 0.8102 0 0 0.693 | 0.027
4 0 0.7275 0 0 0.720 | 0.026
T | Vm | 1.1857 0 0 0 0.590 | 0.023
V | Vm 0 0 0 1.0339 | 0.628 | 0.026
VI 3 | 0.1733 | 0.6460 0 0 0.659 | 0.027
0.2867 | 0.4851 0 0 0.653 | 0.027

VII | Vm | 2.1112 0 -2.1112 0 1/2 0
2 0 1.5508 0 -1.0339 | 0.628 | 0.026
VIII | 3 0 0.8393 0 -0.0485 | 0.693 | 0.027
4 0 0.5259 0 0.3624 | 0.709 | 0.026
IX 3 | 0.1695 | 0.7096 0 -0.1022 | 0.659 | 0.027
4 | 0.2751 | 0.4190 0 0.1432 | 0.653 | 0.027
X | Vm | 0.6678 0 -0.6678 | 1.0339 | 0.628 | 0.026
XV | Vm 0 0 -0.4401 | 1.5933 | 0.676 | 0.031

values of couplings (shown by a cross in Fig. 2). Applying the resummation
procedure, we have not found any other stable FPs in the region of interest.
The effective Hamiltonian (5) at v = v = 0 in the replica limit n — 0
reduces to a product of m effective Hamiltonians of a weakly diluted quenched
random site Ising model. This means that for any value of m > 1 the system
is characterized by the same set of critical exponents as those of a weakly
diluted random site quenched Ising model. In Table 2, we give values of
critical exponents in the other FPs as well: if the flows from initial values of
couplings pass near these FPs, one may observe an effective critical behavior
governed by these critical exponents.

4 Conclusions

We applied the field theoretical RG approach to analyze the critical behavior
of a model of random anisotropy magnets with isotropic and cubic distribu-
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tions of a local anisotropy axis. The origin of a low-temperature phase in this
model is not completely clear. General arguments based on an estimate of
the energy for formation of magnetic domains [16] lead to the conclusion that
for d < 4 a ferromagnetic order is absent [12,17]. However, these arguments
do not take into account the entropy which may be important for disordered
systems [14]. Furthermore, they do not apply for anisotropic distributions of
the random axis [18].

In the RG analysis the absence of a ferromagnetic second-order phase
transition corresponds to the lack of a stable FP of the RG transformation.
However in the case of RAM with isotropic distribution of a local anisotropy
axis the scenario differs. Our two-loop calculation leads to a O(n = 0) sym-
metric FP which is stable for any value of m for both isotropic and cubic
distributions of a random anisotropy axis. Note that this FP is not accessible
from the initial values of the couplings. We checked the location of the FPs
up to second order in the e-expansion and by means of a fixed d = 3 technique
refined by Padé-Borel resummation.

In the case of isotropic distribution of a random anisotropy axis our anal-
ysis supports the conjecture of Aharony [10] based on results linear in ¢ about
runaway solutions of the RG equations. For the cubic distribution we get two
stable FPs. One of them (FP IIT in Fig. 2) is not accessible as in the isotropic
case. But the disordered Ising-like FP (FP XV in Fig. 2) may be reached from
the initial values of couplings. Applying the resummation procedure we have
not found any other stable FPs in the region of interest. This means that
RAM with cubic distributions of a random anisotropy axis is governed by a
set of critical exponents of a weakly site diluted quenched Ising model [21,25].

To conclude we want to attract attention to a certain similarity in the
critical behavior of both random-site [21] and random-anisotropy [4] quenched
magnets: if there appears a new critical behavior at all, it is always governed
by critical exponents of site-diluted Ising type. The above calculations of a
“phase diagram” of RAM are based on two-loop expansions improved by a
resummmation technique. Once the qualitative picture becomes clear, there
is no need to go into higher orders of a perturbation theory as far as the
critical exponents of the site-diluted Ising model are known by now with high
accuracy [25].
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