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We investigate numerically an Ising spin model coupled to two-dimensional Eu-
clidean quantum gravity. We employ Regge calculus to discretize the gravitational
interaction. We study this system on a toroidal and a spherical manifold, with two
different local path integral measures, and an added R? interaction term. We find
in all cases that the critical exponents of the Ising transition are consistent with
the Onsager values, and that the KPZ exponents are definitely excluded.

1 Introduction

The study of two-dimensional (2D) models has often proved to be an impor-
tant first step in developing fundamental ideas concerning higher-dimensional
physics. Such has happened for 2D Euclidean quantum gravity where we have
by now independent analytic results from conformal field theory [1] and ma-
trix models [2], for the critical exponents of a simple toy matter field, namely
a spin model coupled to a fluctuating geometry. Historically, the interest in
2D quantum gravity was inspired by string theory. The time development
of strings leads to 2D world surfaces, which are reparametrization invariant
and quantized, hence describe 2D quantum gravity. Kazakov [3] suggested a
model of Ising spins living on the vertices of so-called planar ¢* graphs. An
exact expression of the partition function was given for Z,, in the thermody-
namic limit n — oo by relating this model to an exactly solvable Hamiltonian
model of two Hermitian matrices [2,4]. Shortly afterwards [5], the same model
was solved also on ¢® graphs, and some time later Knizhnik, Polyakov, and
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Zamolodchikov (KPZ) [1] found the same set of critical exponents in a contin-
uum model of 2D quantum gravity using methods of conformal field theory
for matter of central charge ¢ = 1/2. Since continuum field theory as well
as lattice models agree on the set of critical exponents, one felt comfortable
with the idea that Kazakov’s model was really a model of quantum gravity,
and that matter fields can be strongly influenced, when they are coupled to a
quantum geometry. These new critical exponents were called KPZ exponents,
and turn out to be quite different from the original Ising exponents. The crit-
ical exponents change from the flat-space Onsager values a = 0, 8 = 0.125,
v = 1.75, and v = 1 to the values a = —1, 3 = 0.5, v = 2, and Dv = 3,
where D is the internal fractal dimension of the manifold.

In the following work we will entirely remain in two dimensions and in-
vestigate if the analytic KPZ results obtained for the Ising system (¢ = 1/2)
can be obtained with Regge’s method transcribed to the quantum domain.
Although this question poses itself rather naturally, only few people have ac-
tually investigated this subject. The first to look at this problem were Gross
and Hamber [6] who found the classical flat-space Ising critical exponents.
This came as a surprise since a different method, that was termed dynamical
triangulated random surfaces (DTRS) and that is more or less a Monte Carlo
version of the Boulatov model, gave KPZ results. We have put considerably
effort in modifying the global topology, the local path integral measure, and
added an R? interaction term, in order to see if one observes any effect on
the critical exponents. The results we will present here, have been obtained
over the course of the past seven years [7,8]. We will first review the method,
then the simulation technique, followed by the results, and end with some
conclusion.

2 Regge Calculus

Regge calculus [9] is a discretization approach to gravity which reduces the
infinite degrees of freedom of Riemannian manifolds to a finite number of pa-
rameters by working with piecewise linear spaces. Regge calculus has found
numerous applications in classical and quantum physics. An introduction
with an extensive list of references can be found in Ref. [10]. It can un-
doubtedly be regarded as the best-understood method to discretize classical
gravity. Historically this method was used in the first numerical attempts to
study quantum gravity non-perturbatively [11,12], but it can also be used as
a regularized version of quantum gravity in which one can perform analytic
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calculations [13]. It has been mostly employed in four dimensions where ex-
tensive simulations have been carried out [14]. The Regge approach in two
dimensions consists of choosing a triangulation of the manifold under consid-
eration, which means that the topology stays fixed from the beginning. One
then assigns link lengths to each triangle (or simplex, in higher dimensions),
which play the role of the dynamical variables. This is, incidentally, the
opposite procedure to what one does in the so-called DTRS method, where
one has fixed edge lengths, and a fluctuating connectivity. The values of its
squared edge length ¢;; = lfj induce a constant metric in the interior of each
simplex, because g;; can linearly be related to the three components of the
metric 7,,,. Local curvature can be described by the rotation experienced by
a vector when it is parallel transported in a closed curve around a vertex,
where several triangles meet. The angle of rotation is measured by the deficit
angle §; at the vertex ¢ that can intrinsically be defined as

Si=2m— > 01, (1)

all ¢ sharing ¢

and 0;(t) is the dihedral angle associated with the triangle ¢. Curvature is
therefore distributed delta-function-like with support on the vertices. The
dihedral angles can be computed purely out of the link length information.
Defining the barycentric area connected to the site i,

1
A=) A, (2)
tDi

where A; denotes the area of the triangle ¢, one can then write down the
simplicial analogue of continuum integrals like

/d2x\/g(x) — ZAi7 (3)
% d*z+/g(x)R(z) — Z@' = 2mx(M), (4)

d*z+/g(x)R*(x) — 42 i—: (5)

Eq. (4) is the simplicial analogue of the Gauss-Bonnet theorem which relates
the differential-geometric integral on the left hand side to a topological invari-
ant, namely the FEuler characteristic y. This makes pure 2D gravity, based
on the action corresponding to Eq. (4), dynamically trivial, but leaves still
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open the possibility that matter fields can be influenced by the fluctuating
geometry. In two dimensions it can be shown that Eq. (5) gives the exact
continuum result on any regular triangulation of the sphere [11].

The Euler characteristic of a two-dimensional manifold M can also be
written as x = 2(1—g), where g is the gender of the surface, which counts how
many holes there are in M. For a simplicial complex, the Euler characteristic
can also be computed as

No—N1 +N2:2(1—g), (6)

where Ny, N1, and Ny denote the number of sites, links, and triangles, re-
spectively. For a compact complex we also know that a link is shared by two
triangles, resulting in the relation N7 /3 = N3/2. From these two relations one
can derive two more, namely Ny —2(1—g) = N»/2 and Ng—2(1—g) = N1/3,
which will become useful later. The sphere has g = 0 and the torus has g = 1.

3 Model and Simulation Techniques

We simulated the partition function

Z = {z; / Du(l) exp [-I(1) — KE(l, 5)|6 (Z Ay — A) , (7)

where {s} denotes the set of all spin configurations of the Ising spins s; = +1,
and the gravitational action is defined as

52
(1) = AA; = . 8
=3 (Mi+oy) )
The energy of Ising spins, which are located at the vertices i of the lattice, is
denoted by

E(l,s):% 3 Aij<si ___8j>2, 9)

edges l;; l”
and the barycentric area A;; associated with a link /;; is defined as
1
triangles t D l;;

The energy is the discretized analogue of the continuum action for a scalar

field ¢, i.e. [d%zy\/g(z)g" ()0 Dyep.
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The delta function in Eq. (7) ensures that the total area is kept fixed
at a given value A, thus rendering the cosmological constant irrelevant, and
classically, gravitational dynamics can only arise from an R2-interaction term.
Such a term was used in two and higher dimensions to cure the unboundedness
problem of the pure gravitational action [11]. From dimensional arguments,
one would expect such a term to be irrelevant for the Ising transition. An
inclusion of this term enabled us to test these arguments.

The quantization procedure of the classical Regge action rests on the path
integral formulation [15] of Eq. (7). For the path-integral measure Du(l) we
mostly used a simple scale-invariant measure of the form [7,16]

H dgij/aij Fe({ai; })- (11)
(ig)

The function Fe({g;;}) ensures Euclidean geometry. If the triangle inequali-
ties are obeyed it assumes the value one, otherwise it vanishes. The parameter
€ serves to suppress very thin triangles by generalizing the triangle inequalities
to a (still scale-invariant) form (I3 +l2) > (1 — €)l3 and (I1 — l2) < (1 4 €)l3.
This makes the algorithm faster, because many proposed new values for [
that would get discarded with high probability, are thrown out at some ear-
lier program steps. This is not necessary for convergence, unlike in higher
dimensions. For our simulations, € was of the order 10™%. We checked that a
different value of € did not change the outcome of our measurements. The at-
tractiveness of the measure (11) lies in the fact that it is local, scale invariant,
and the integral runs directly over the variables &;; = Inl;;, which makes it
well-adapted for computer simulations, hence the term “computer measure”.
Sometimes we will also use the abbreviation “dl/l-measure” for the measure
of Eq. (11).

Most continuum measures differ by the power of the determinant of the
metric g, which stands in front of the integration measure. In a naive tran-
scription of the volume element /g to the Regge formalism one identifies
V9 — Ajj, where A;; is a volume associated with a link [;;. Keeping the
freedom of having some power of /;; appearing in the measure, one is led to
consider the following two-parameter class of measures [6]:

HAU as; VdaigFe{aii})- (12)

In terms of the two parameters a and o the computer measure corresponds
to a =0, 0 = 0. An analog of the scale invariant Misner measure would be
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Figure 1. dl/l measure configuration for the sphere with d = 4, corresponding to No = 56.

a = 1,0 = —1/2, and the lattice analog of the popular DeWitt measure is
given by a« = 1,0 = —1/4. We will present here also some preliminary data
with the DeWitt measure, which is not scale-invariant [8].

We have simulated the gravitational action using a standard multi-hit
Metropolis update. As Ising update we used the single-cluster (Wolff) algo-
rithm [17] which prevents the critical slowing down near the phase transition.
One update in the single-cluster variant consists of choosing a random mirror
plane and a random site, which is the starting point for growing a cluster of
reflected spins. The size and shape of the cluster is controlled by a Metropolis
like accept/reject criterion satisfying detailed balance.

Between measurements we performed n = 2,...,4 Monte Carlo steps
consisting of one lattice sweep to update the link lengths /;; followed by a
single-cluster flip to update (a fraction of) the spins s;. We tested in some
cases that varying the relative frequency of link and spin updates does not
change the results within error bars.

We used two different global topologies for our simulations to check for a
possible influence of topology on the phase transition. The main investiga-
tion was performed on regular triangulated tori of size Ny = L? with fixed
coordination number ¢ = 6. This triangulation gives rise to 2Ny triangles and
3Ny link variables. The principal simulations were performed at a curvature
squared coupling value of a = 0.001 and the couplings K = 1 and K = 1.025
for L = 6,8,10,12,16, 32,64, 100, 128, 200, 256, and 512. Additional simu-
lations were performed with ¢ = 0 and 0.1 at K = 1.025, using lattices of
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size L = 8,16,32,64, 100, 128, and 256. Because of the scale invariance of the
measure we could rescale each link when proposing a link update such that
the total area was kept fixed to its initial value A = Ny. The difference of
the model defined by (7) and the Ising model on a static triangular lattice is
that the spins are coupled by geometric weight factors w;; = A;;/ lfj which
can fluctuate around the static value w;; = \/ﬁ/ 6.

For the spherical lattice topology we used the triangulated surface of a
three-dimensional cube of edge length d. This provides us with an almost
regular triangulation of the sphere where six vertices have coordination num-
ber four, and all others have coordination number six. In terms of the linear
length d of the cube the number of vertices is Ng = 6(d — 1)? + 2. For fur-
ther reference the number of links and triangles in terms of Ny are given by
N7 = 3Ny — 6, and Ny = 2Ny — 4, respectively. We studied ten system sizes
ranging from d = 10 (Ng = 488) up to d = 55 (Ng = 17498). The area was
kept fixed to its initial value A = N3/2, and we used no coupling to the R?
term, i.e. a = 0. As simulation point we have chosen a value of Kq = 1.025,
already anticipating that this value is close to the critical coupling K. on the
torus. To compare previous values we set as our linear length scale L = /Ng.
A typical configuration can be viewed at in Fig. 1, which was produced using
the computer measure of Eq. (11)

For each run we recorded the time series of the energy density e = /N,
the magnetization density m = Y. A;s;/No and the Liouville field density
@ =_,InA;/Ny. After an initial equilibration time, we performed for each
lattice size about 50 000 measurements. From an analysis of the time series we
found integrated autocorrelation times for the energy and the magnetization
of about 1—7 (in units of measurements) for all lattice sizes. To obtain results
for the various observables O at K values in an interval around the simulation
point Ky, we applied the reweighting method [18]. Since we recorded the time
series this amounts to computing

(O 25E) i,

O = T,

(13)
with AK = K — K. To obtain errors we divided each run into 20 blocks
and computed standard Jackknife errors. At ¢ = 0.001 where we had two
simulations at different K values, we combined the results according to their
errors [19].
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From the time series we computed the Binder parameter [20],

(14)

5.

W =
—~
3
[\v]
~

It is well known that the Ur (K) curves for different L cross around (K., U*)
with slopes oc L%, apart from confluent corrections explaining small sys-
tematic deviations. This allows an almost unbiased estimate of the critical
coupling K, the critical correlation length exponent v, and the renormalized
charge U*. We further analyzed the (finite lattice) susceptibility,

X(K) = No((m?) — (jm])?), (15)
the susceptibility in the disordered phase,
X' (K) = No((m?)), (16)
the specific heat,
C(K) = K*No((¢*) — (e)?), (17)

and studied the (finite lattice) magnetization at its point of inflection,
(Im|)|int- The inflection point can be obtained from the maximum of
d{|m|)/dK.  Further useful quantities are the logarithmic derivatives
dIn(Jm|)/dK and dIn{m?)/dK. Another gravitational quantity of interest
is the Liouville field ¢(z) = In\/g(x). In the discretized version its lattice
average reads as ¢ = 1/Np Y, In A;, and the associated lattice Liouville sus-
ceptibility is defined as x,(L) = No({¢?) — (¢)?).

4 Results

By applying the outlined reweighting techniques we first determined the max-
ima of x, C, d(|m|)/dK, dIn(|m|)/dK, and dIn{m?)/dK. The location of the
maxima provided us with five sequences of pseudo-transition points Kpax(L)
for which the scaling variable 2 = (Kpax(L) — K.)LY" should be constant.
Using this information we then have several possibilities to extract the criti-
cal exponent v from (linear) least square fits of the finite-size scaling (FSS)
ansatz dUp /dK = LYV fo(z) or dln(|m|P)/dK = L'V f,(x) to the data at
the various Kmax(L).

For the torus, the very extensive simulations at ¢ = 0.001 show good
agreement with the Onsager value v = 1 at a 2 % level. For the other
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Figure 2. Double logarithmic finite-size scaling plot of the susceptibility maxima xmax for
a = 0.0,0.001, and 0.1 on the torus. To disentangle the curves we added an offset of —2
(2) to the data for a = 0.0 (a = 0.1). The slopes are in all three cases compatible with the
Onsager value /v = 1.75 for regular static lattices.

two couplings, a = 0.1 and a = 0, the data scatter a bit more but are still
compatible with v = 1. For the sphere the values are slightly smaller, but still
compatible with one. Combining this information we use in further analyses

K. =1.0234+0.0002 (a = 0.0), Torus, (18)
K. =1.0230+0.0010 (a = 0.0), Sphere, (19)
K. = 1.0265 4+ 0.0001  ( (20)

( (21)

a = 0.001), Torus,
K. =1.0295=£ 0.0001 =0.1

a ), Torus.

In particular we can now test the consistency of our data and extract v also
from the scaling of dU/dK and dIn(|m|P)/dK at K., see Table 1.

To extract the critical exponent ratio v/v we used the scaling x =
L/v f3(x) at the previously discussed points of constant x, as well as the
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Table 1. Comparison of our Monte Carlo results on the torus and on the sphere with
the exact results for the Ising model on static lattices (Onsager) and the KPZ exponents.
The values marked with a star were computed from hyperscaling relations with D = 2,
thereby neglecting possible scaling effects due to the internal fractal dimension in the
DTRS approach.

@ 16} y ) n v
KPZ —-11]0.5 2 5 2/3* 1.5*
Onsager 0] 0.125 1.75 15 0.25 1
Torus-dl /1 ~0 | 0.126(2) | 1.75(2) | 14.9(3) | 0.272(3) | 1.01(1)
Sphere-dl /I ~0 | 0.130(26) | 1.61(12) | 14(3) 0.256(6) | 0.93(5)
Sphere-DeWitt | ~0 | 0.12(1) | 1.75(1) | 15(2) | 0.25(1) | 1.00(1)

scaling of X’ at K.. The values for v/v for the different values of a are
compatible with each other, but are all slightly below the Onsager value of
~v/v = 1.75. Due to their respective error range, however, they are still con-
sistent with the flat space exponent ratio. The quality of the fits for ymax
on the torus can be inspected in Fig. 2, and the final values for v, inserting
our previously determined value for v, can be found also in Table 1. For the
sphere a weighted fit over all values gave /v = 1.744(6).

To extract the magnetical critical exponent ratio §/v we used that
(Im|) = L=B/¥f,(x) at all constant z-values. Another method is to look
at the scaling of d(|m|)/dK = L~/ f;(x). Because the errors on the dif-
ferent estimates turned out to vary over a large range we chose to compute
error-weighted averages. Using our average values for v in Table 1 we obtain
the final estimates of 3/v = 0.127(3) (torus, a = 0.001), B/v = 0.123(2)
(torus, a = 0.1), B/v = 0.123(4) (torus, a = 0.0), and /v = 0.14(2) (sphere,
a = 0.0). Again we see little influence of the curvature square term, and the
results are again in agreement with the Onsager result 5/v = 0.125.

For a specific-heat exponent « of zero we expect a logarithmic divergence
like

C(z,L) = A(z) + B(z)In L. (22)

Indeed the data at the different fixed values of x could all be fitted nicely
with this ansatz, supporting again the Onsager value. We also performed
simulations using a lattice transcription of the DeWitt measure according to
Eq. (12) with @ = 1,0 = —1/4, which did not change the results at all [8], and
some results from a preliminary data analysis can be found in Table 1 as well,
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where we also used the scaling relations n = 2 — /v, and § =1+ /3. The
short summary of our findings is that the critical exponents still agree with
the Onsager exponents for regular static lattices to a high degree of accuracy,
and KPZ exponents are definitely excluded.

For the sphere, the non-regular triangulation seems to affect the finite-
size behavior in a negative way, and one could probably obtain more accurate
results comparable to those on the torus, by using a random triangulation of
the sphere [21,22]. Unlike in the pure gravity case, where the global lattice
topology enters in the formula for the string susceptibility exponent [23], it
does not affect the critical exponents of the Ising phase transition.

5 Conclusions

Using a highly efficient cluster update algorithm and advanced reweighting
techniques, our results have shown that the model defined by (7), describing
Ising spins coupled to quantum gravity, remained in the Onsager universality
class. This statement still holds if the global lattice topology was changed
from the torus to the sphere. We conclude therefore that the global topology
does not play any role for the Ising critical exponents, as it does for example
for the string susceptibility exponent ~g;,. We have also tested two local
lattice measures, the dl/l and DeWitt measure, and saw no effect on the
Ising transition. We have also found no influence of an added curvature
square term R2, as one would expect from dimensional arguments. Overall
we can conclude that neither the global topology nor the change of the local
measure or the added R? interaction term change the critical exponents of
the Ising system coupled to gravity via Eq. (9). The KPZ exponents are
definitely excluded. We have further shown that one can use the Ising system
(¢ =1/2) as a probe to test KPZ scaling because there the FSS analyses are
standard and give very accurate results.

Unfortunately the present situation is unsatisfactory, because one needs to
explain why different discrete approaches to a “simple” 2D quantum gravity
model lead to different results. After all, both models were supposed to
describe the same continuum physics. There are still various possibilities to
explain this:

e one needs to use a discrete nonlocal measure,
e the spin coupling to gravity is not correct,
e KPZ results are due to the fluctuating incidence matrix of the lattice,
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e KPZ results are due to Euclidean gravity.

The first point was advocated strongly by Menotti and others [24], however,
up to today nobody has shown that with a non-local measure one is able to
get the KPZ exponents using the Regge calculus formulation. There are also
calculations which show [25] that the proposed non-local lattice measures fail
to agree with their continuum counterparts already in the weak field, low
momentum limit, hence are not acceptable discrete functional measures. The
second point relies on the fact that the coupling of the Ising spins to gravity
in the Regge formulation was only heuristically written down in Eq. (9). A
more profound investigation might lead to a different lattice implementation,
which in turn could change the critical behavior. However, nobody has yet
investigated this possibility. The third point suggests that the Regge method,
because it is based on a fixed incidence matrix, cannot capture the necessary
randomness in the coordination number, to induce a change of universality
class. This randomness might, however, be of such an importance only in two
dimensions, because here the Einstein-Hilbert term is trivial, and all what is
left is the freedom of the incidence matrix to rearrange. In higher dimensions
one can assume that the propagation modes of the Einstein-Hilbert term will
be dominant so that this possible drawback of Regge calculus becomes unim-
portant. It is nevertheless unclear, why a purely field theoretic continuum
Lagrangian like the one in Ref. [1] should give different results from the Regge
method which is designed to approximate just the same model.

The last point goes back to suggestions by Ambjgrn et al. [26] who showed
that even for the DTRS method the critical exponents actually remain in
the Onsager universality class if one uses a Lorentzian gravity formulation
instead of an Euclidean one. The Lorentzian space-time structure and its
causal requirement seems to be so stringent that it smoothes the possible
randomness, thereby leaving the Ising system in its flat-space class. Regge
calculus was actually designed to work in a Lorentzian geometry, but this
still does not explain why it apparently is not able to describe well Euclidean
geometry. This might again be related to the lack of the necessary randomness
due to the fixed incidence matrix.

We still think that the question why the Regge method shows no effect
on the Ising transition has to be resolved completely, because in one way or
the other, we will learn lessons for future studies of a more realistic theory of
quantum gravity. Even though two-dimensional gravity is, classically spoken,
rather trivial, these questions await still their final answer.
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