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It is shown how the scalar field is a necessary part of torsion. Its effects of being
incorporated into the torsion tensor are examined.

1 Introduction

Before a great dam collapses, small rivulets form deep holes within its mass,
allowing water to trickle through, and then gather enough momentum to
erode the mighty structure and reduce it to rubble. Like the water and air
separated by the dam, general relativity and quantum mechanics have been
kept apart, and despite the countless years and desperate attempts to bring
them together, the great wall of ignorance, stronger than any concrete, has
held as firm barrier between the two. In recent years, however, we may have
witnessed the first trickle cutting through the dam. These tiny rivulets are
strings, and if they succeed in gathering sufficient momentum, they may carve
out the new river bed for a quantum theory of gravity. It is a pleasure to
write this article for the occasion of Hagen Kleinert’s sixtieth birthday, whose
prolific work in so many areas has surely worn down the barrier, and has
established many inroads to developing a more complete picture of physics.
When it was discovered that gravity was incorporated in string theory the
landscape began to change in several ways. The string theorists welcomed its
honored guest with open arms, and argued that its natural inclusion indicates
that string theory is a physical theory, and not simply ornate mathematics.
However, string theory did not only invite the gravitational field on stage,
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but an antisymmetric and a scalar field made their appearance as well, and
could not be denied by their audience. Scherk and Schwarz [1] made a major
breakthrough, creating the first rivulet, showing that the low energy effective
Lagrangian of string theory is simply the curvature scalar R of space-time with
torsion. This amazing result used more than string to tie together hitherto
disparate theories. It gave a rich and compelling low energy Lagrangian that
announced the presence of gravity quite effectively, while giving a geometrical
interpretation to all three fields.

These results were planted decades ago, but their full harvest has still not
been reaped. Many general relativists have remained unwilling to consider
gravitation with torsion. String theory, aside the ground breaking work of
Kibble [2], Hehl [3], and others, who used torsion in formulating a local
Poincaré gauge theory, was unable to provide a rich enough soil to host the
full growth of these ideas. In recent years, though, the combined theoretical
predictions of string theory and general relativity with torsion have produced
a synergism that has breathed new life into both the foundation and physical
interpretations of the new fields.

One of the recent advances from the gravitational side showed that the
torsion arises from intrinsic spin. This was not only known from the local
Poincaré approach, but was also verified by explicit calculations of the equa-
tions of motion [4]. In fact, the use of general relativity provided for the
detailed interaction of intrinsic spin with gravity or spin. In developing the
phenomenological source of spin, it was found that an intrinsic vector, &,
had to be introduced. At first this vector posed as a mysterious stranger,
and only pointed to general hints at physical interpretations. For example,
it indicated that the source could not be represented by a point particle but
must be at least one-dimensional, but the issue was not resolved until the
incorporation of a string source [5].

Not only has the antisymmetric field been given a physical interpretation
and home, but the scalar field has been adopted as well. Under my original
program torsion was defined as Sj,,o = Y[u,0]- However, when the source
was taken to be given by the Dirac Lagrangian, several more interesting
results sprouted. One of these is that the low energy limit of the resulting
Dirac equation gave the same interaction as the phenomenological result, and
although this shed no light on £, it justified its introduction. Another result
was the germination of the scalar field. With Dirac coupling, if torsion of the
kind given above is included, then a scalar field must be present. In fact, it
may be interpreted that the scalar field must arise due to the non-conservation
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of the axial current. In order to incorporate the scalar field in the original
seeding, it was shown that the generalization of the torsion to [6]

2
Spua = w[y,l/],a' + gep,ua'yﬁbﬁ (1)

yields the correct self-consistent results.

With this generalization it was found that the curvature scalar R of grav-
itation with torsion not only gives the correct low energy effective limit of
string theory, it provides a physical interpretation of the origin of the scalar
field [7]. It turned out that the source is related to the pseudoscalar invariant,
a result that gives a definite direction in which to search for scalar field effects.
There was also an improvement over the original results of Ref. [1]: in the
current case there are no longer undefined fields, and the covariant derivative
of the metric tensor vanishes, which insures constancy of length upon parallel
transport.

The ties that bind string theory to gravitation discussed so far, are the
antisymmetric field and its definition as torsion, the resulting equivalence of
the low energy effective string theory Lagrangian to R, and the fact that
gravitation with this torsion would not allow zero-dimensional sources. In
recent years the final tie was to formulate gravitation with a string source [8].
This not only provided a natural origin for the antisymmetric field, and gave a
very satisfying interpretation to the conservation laws, it provided a physical
interpretation of £€# [9]. Shedding its cloak of obscurity, this vector was finally
recognized as the tangent vector to the string (see Ref. [9]). In fact, if strings
had not been invented already, this line of growth would have led naturally
to their doorstep.

Like the nourishment a flood can provide to a barren soil, these new fields
plant the possibilities of providing new effects that may be measured. Below, I
will establish an interaction between the scalar field and the spin of a particle.
This is a new prediction and grows from a very simple foundation. Jumping
ahead, the result I will show is that the interaction is given by the scalar
product of the spin of a particle and the scalar field gradient.

2 Torsion and the Action

The variation principle is taken to be

S(I, +1) =0, 2)
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where
R
I Z/v—gﬂd% (3)

and [ is the material action. The curvature scalar R is that of Uy space-time.
The energy momentum tensor is defined by

1
51, = 5/ci‘ix\/—gT’“’&ﬁW, (4)

where ¢, = guv + Y, which gives an antisymmetric energy momentum
tensor that has been discussed in Ref. [9]. The field equations are obtained
by taking variations with respect to ¢, , and are

e L )
where
1
GHY = R — EQWR (6)

and R*¥ is the (asymmetric) Ricci tensor in Uy space-time. The field equa-
tions for torsion are given by

SHUO’;G’ = _kj'uua (7)

where j# = (1/2)Tk],

3 The Source, and the Essential Scalar Field

The equations defined above carry little content until T#" is specified. One
should not be swayed by (4), which carries as much content as vacuum: it is
merely a definition. All things that are measured come from the equations
of motion, or the interaction energies predicted by the theory, but none of
these can be obtained until an explicit form of T#” is given. This is part of
the beauty and simplicity of the Einstein equations, or their generalizations,
when they are derived from an action principle.

For now, we would like to investigate the effects on the scalar field of using
the Dirac Lagrangian as the source. Thus, assume that the material action
is given by

L= 7%’ [(Da)v*) — " Datp — 2imap)] (8)
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with
1
Doy =1 q — ZFabC'Yb'ch)a (9)

where Ty is the non-holonomic spin connection and contains (1). Thus, we
have the variational principle,

R 4
where e is \/—g.

A comforting surprise reveals itself when R is expanded into ° R, the curva-
ture scalar of Riemann space-time (no torsion), plus everything else. Ignoring
terms that give no contributions to any of the field equations, the action be-
comes

°R — H;/,VO'HMUU + 4¢7o (;b’U
2k

5/\/—_gd4x<

If we take k = 87Ge??, which does not affect the derivation of (11), the low
energy effective Lagrangian of string theory results. Our goal is to investigate
interactions and possible measurements of the scalar field, so let us consider
the weak ¢ limit in the Einstein frame, which yields

OR_S VUSMVU_l i T
5/«/_gd4:c< K e 2079 +L>—0, (12)

+ L) =0. (11)

where k, = 871G is the standard constant.

This can be generalized somewhat by introducing non-minimal coupling,
in which case the undetermined coupling constant x is introduced (we get
minimal coupling results by letting x = 1) [10]. Proceeding in this most
general case, the Dirac equation, which is obtained by performing variations
with respect to 1, is

K .
7 (0 = 5Suber"7) ¥+ imyp =0, (13)
where
Sabe = eg‘eerS’aﬂ,y (14)

is the torsion in the anholonomic basis.
One result immediately shows itself from (13): the scalar field interactions
with the Dirac particle. Since our current mission is to investigate the effects



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

682 R.T. Hammond

of the scalar field, we will ignore the contribution from H,g,. The Dirac
equation may be separated, in the low energy limit, in terms of its “large”
and “small” two-spinors, as usual. Calling ¥ the large two-component spinor,
the Dirac equation yields

L0 p? V24ke
h—V¥ =+—U - 1
i T +2m + 5 S -V, (15)

where S is the spin, and cgs units have been restored.

This is part of the main result, and gives the explicit form of the interaction
with the scalar field. It shows that the interaction is given by the scalar
product of the intrinsic spin and the gradient of the scalar field, but there is
more to come. The field equation for the scalar field, obtained by considering
variations with respect to ¢, may be put in the form

O¢ = —16m/6i(i—2m%5w. (16)

4 Conclusion

The last two equations, (15) and (16), constitute the main result. In words,
Eq. (16) states that the scalar field arises from the pseudoscalar invariant,
a quantity that vanishes for free particles but not in general. Once this is
used in order to find ¢, Eq. (15) can be taken to find the interaction. Thus,
I must leave you hanging, a bit. The next steps in this research program
are to evaluate Eq. (16) for any systems that seem propitious, and then to
calculate the interaction strength. These results will be used to look for
such an interaction, or apply the results to bound the non-minimal coupling
constant.
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