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If G is a semisimple Lie group and GC its complexification then we define a stochas-
tic process g¢ with values in G such that (f(g¢)) is a solution of the Schrédinger
equation on G. We consider a function V' (a potential) continuous on G and mero-
morphic on G€. We obtain the Schrodinger evolution in a potential by means of
the Feynman formula. We discuss an equivalent construction of the Schrodinger
evolution by means of stochastic equations which are defined as a stochastic per-
turbation of classical dynamics.

1 Introduction

A definition of the Feynman integral on a manifold encounters numerous dif-
ficulties. These difficulties arise because there seems to be no natural finite-
dimensional approximation to the Feynman integral on a manifold (contrary
to the flat case). It should be useful to apply a map of a manifold (locally)
into a region in a flat space, where the path integral is well-defined. The
method has been applied by mathematicians [1] in order to define the Brown-
ian motion and the Wiener measure on a Riemannian manifold. Multivalued
mappings have been introduced by Hagen Kleinert [2]. Such transformations
allow us to define the Feynman integral on a manifold with curvature and
torsion.

In this contribution we study the mapping method in order to define
the Feynman integral on a semisimple Lie group in terms of the Brownian
motion on R?. The Feynman integral is understood here in a broad sense as
defining the solution of the Schrodinger equation by means of a functional
measure. In our earlier works [3,4] we have studied the Brownian motion
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representation of the Feynman integral in a flat case. The manifolds were only
briefly discussed. The semisimple Lie groups are particularly simple from our
point of view because there is a natural map from a flat space (the algebra)
onto the group. So, we can transform the Brownian motion from the algebra
into a complex process on a complexification of the group. This process gives
a realization of the Feynman integral. Subsequently, we consider a function
V on a group (a potential) and derive the Feynman integral representation of
the solution of the Schrodinger equation with the potential. We discuss also
the semiclassical expansion and a Langevin equation on a group which can
be applied to generate this semiclassical expansion.

2 Notation and Preliminaries

Let G be the d-dimensional Lie group, whose complexification is denoted
by G¢. G is the Lie algebra of G (we denote its complexification by G¢).
The exponential map £ is a diffeomorphism of a neighbourhood of 0 in G
into a neighbourhood of 1 in G . It extends to a holomorphic map of a
neighbourhood of G into a neighbourhood of G¢. We shall restrict ourselves
to matrix groups (which give a faithful representation of a semisimple Lie
group G). By 77 we denote a basis of the Lie algebra G normalized by the
Killing form C’%. Then we define T = Zil ijj, where y; € R. When
restricted to the matrix group the exponential map will also be denoted by
E(T) = exp(T), because in this case the exponential has a direct meaning as
an exponential of a matrix (now Tr (777%) = —CI¥).

Let r; (j = 1,...,d), be independent random Gaussian variables. The
vector r can be considered as a random variable in a d-dimensional algebra
G with the probability distribution

) = Fesp (2. )

We wish to transform this random variable to the group by means of the expo-
nential map. Let R = 22:1 r;7) € G. We define the probability distribution
on the semisimple Lie group G€ by the formula

EF (exp(2R))] = /Rd dyp(y)F (exp(zT)). (2)

For the Feynman integral we choose

Z = €elo,
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where € is a real parameter, \ is defined by

1
A= —(1+1),
0+
and
h
o=1\/—
m

with Planck’s constant 2 and mass m.

3 Discretization of the Feynman Integral

The Gaussian random variables are applied in order to define a finite-
dimensional approximation to the Feynman integral. We define recursively a
random walk on the group as a solution of the equation

9(n+1) = exp(zR(n))g(n), (3)

where n > 0 and ¢g(0) = g. Then, we take the limit n — oo, € — 0 and

€2n — t > 0 in order to define a continuous process g(t) with values in G

It has the following properties

1) 9(0)=g.
ii) The increments

g(t) tg(ta), .., g(tn1) tg(tn), t1<t2<..<t, (4)

are mutually independent.
iii) The probability distribution of g(t1) 'g(t2) depends only on ta — ;.
iv) g(t) is the solution of the Stratonovitch stochastic equation [5]

dg(t) = zdb(t) o g(t), (5)
where b(s) = Zizl 7kby (s) and by (s) are independent Brownian motions.

Eq. (5) follows from Eq. (3). In fact, we have
n n

> (glk+1) —g(k) g(k) " = (exp(zR) — 1),

k=1 k=1
and the right-hand side tends to the Brownian motion as ¢ — 0 and n — oo
(because the sum of independent random variables tends to the Brownian
motion).
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When the probability distribution (2) of independent random variables is
known then the distribution of group elements can be formally expressed by
a change of variables y — g,

11 dyr exp(=y7/2) = [ [ dyx exp {—%Tr [ln (g (k+1)g (k)l)r} - (6)
k k

It is clear that the logarithm is only locally defined around the unit element of
the group. Moreover, in order to replace the R? integral by a group integral,
we would need to calculate the Jacobian. Again we could do it only locally.
Fortunately, we do not need to derive the corresponding formulas explicitly.
We know that in general a linear continuous functional (f(gi,...,g,)) on a
Cartesian product of groups determines a measure on the product of groups.
This is the discrete version of the Feynman integral. We discuss still another
definition in the next section.

4 Unitary Evolution in L?(dg)

Instead of describing explicitly the discrete Feynman measure we consider the
discrete time evolution of the group element. The probability distribution (2)
of g(n) determines the operator

(KeoF)(9) = E[F(9(R)9)], (7)

where we denoted g(R) = exp(eAoR). Clearly,

(K2, F)(9) = E[F(9(R(n))...g9 (R(1) g)], (8)

where R(k) numerates independent random variables. From Egs. (2), (3),
and (7) we obtain the kernel of K. »

(Keaf)(0) = [ dvp0)F (9009) = [ dyKeala.s)F (). )
Eq. (7) has a meaning only for analytic functions F. However, using the

(distributional) kernel (9) we can extend the definition of K. , to any F' €
L'(dg). From Eq. (8) we have

(K", F)(g) = / dyy ...dyop(yr) .. p(ya)F (g (Ta) .. g (T1)g).  (10)
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We define the generator A, of K., as a limit in L?(dY),

it

A, (11)

A, = lim e*Z(KE,U -1)=
e—0
Applying the Taylor formula on the Lie group we can compute the generator
Ay of K., directly from Eq. (11). We obtain
ih &
__w Kl
A, = 5 ZC’ X, X, (12)
k=1
where X, is the basis of right-invariant vector fields on G corresponding to
the basis 7 € G. Then A is the Laplace-Beltrami operator on the group.
The limit € — 0 in Eq. (9) defines a continuous time semigroup. In fact,
it follows from Eq. (11) that if we define

(U:F)(g) = Fi(g") = E[F(9(t)g"); (13)

where g(t) (with g(0) = 1) is the solution of Eq. (5), then U; defines a semi-
group in L?(dg) with the generator A,. F; is the solution of the Schrodinger
equation

d

EFt(gl) = AaFt(gl) (14)

with the initial condition F'

After a change of coordinates from the algebra to the group, Eq. (10)
could be considered as another rigorous version of the discrete Feynman in-
tegral (a formal expression is described by Eq. (6)). Note however that the
map G — R? is multivalued and discontinuous (as the maps considered in
Ref. [6]). Hence, the formula for a change of variables in Eq. (9) would be
rather complicated. The Feynman integral on a manifold has been defined
in some earlier papers [7-9] in terms of the short-time propagator. However,
the short-time propagator must be derived first by other methods. Then,
the continuum limit (13) of the products of short-time propagators does not
define a measure. Finally, in order to obtain the generator (11) one must
artificially subtract the R/6 term (where R is the scalar curvature) from the
propagator. The R/6 term comes from a determinant of the map RY — G
(as was shown in Ref. [2]). Hence, its presence is explained by the method of
non-holonomic equivalence principle [6].
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5 Feynman Integral on a Group

Let V be a continuous function on G which is meromorphic on G¢. We are
going to express a solution of the Schrodinger equation with the Hamiltonian
H = ihA,+V by the Feynman integral. Assume that for a function F' defined
on G¢ the function

o (<1 [ Va1 ds) Flatorg)

is integrable. Then

W ORI =B [ow (-1 [Vens) Fann] 09

satisfies the Schrédinger equation

d 1

40 = (42— 1V ) i) (10

with the initial condition lim; .o Fi(g) = F(g).

The semigroup property of the operator defined by the right-hand side
of Eq. (15) follows from the Markov property of g(t) and the additivity of
fot dsV as a function of ¢. The Markov property of g(t) follows from its
construction (3). Then, using the semigroup property it is sufficient to prove
Eq. (16) at t = 0. At ¢t = 0, Eq. (16) follows from Eq. (14) and the Leibniz
rule of differentiation.

There remains the basic problem of showing the integrability of the func-
tion inside the square brackets in Eq. (15).

Our basic tool in the proof of integrability is the Jensen inequality

5o (1 ['Visias) ot
< [ Lo (317 60)) I (010 |
-/ L4y Ko .oV (35v @) IFE)l ()

where K is the kernel of U;. We apply this inequality for a regularized V,
e.g.

Vi (9(5)) = V (9 (5)) exp (— | @t oy /R) |
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which is a bounded function, then we take the limit R — oo. Hence, the
inequality (17) holds true for V itself. Another method of a regularization of
the Feynman formula comes from the Trotter product formula (Uy is defined
in Eq. (13))

it "
UYF = lim |U,, ——V|| F
t 7L1—>II;O |: t/ oxp < nh >:|
where for a large n

Uy F(g) ~ / dyp(y)F <exp (AU%T) g> . (18)

Hence

'Ut/n exp [—%V(g)] F(g)'
< Lot [3-1 ox (3027) |
F (exp (m%r) g) ’ . (19)

At this stage we can apply the Jensen inequality (17).
As an example let us consider the group SU(2). Each element of the group
can be expressed in the form (where r = (y1,...,y4) and r = |r|)

X

g = exp(isr) = [ cosr +isrsinr, (20)
where s are the Pauli matrices satisfying
[s. 5] = 2i€1151.
As a typical meromorphic function on G¢ we may consider
V(g) = Tr (9) (1 + (Tr (9))°) ", (21)
where Tr (g) = 2 cosr. Now, we have
g = exp(AaY) = I cos(Aor) + idosy sin(Aor).

In order to prove that the integral (15) is finite for a small time we must show
that the singularities of exp(SV (exp(AoT)g)) are integrable . Let us take for
simplicity g = 1 in Eq. (15). Then we have Tr (exp(AcT)) = 2 cos((1 + i) A)
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for a certain real A. Hence, the denominator in Eq. (15) with the potential
(21) is

1+ (Tr (exp(AoX)))? = 1 + cos® A cosh? A — sin? Asinh? A
—%SmQAgnhz4 (22)

We can see that this expression is never zero. Hence, the exponential factor
is integrable. In general, the denominator can be zero but on a set of measure
zero. Then, the integrability can still be established.

6 Semiclassical Expansion

The classical limit of Eq. (13) (without the potential) is determined by the
Lagrangian

m dg 2
L=—Tr(—g ") . 23
. ( “, ) (23)
As there is only the kinetic term in L, the time derivative of L vanishes when
calculated on the classical solution. Hence, the classical equations read

dg 4

—g ~ = v = const.

dt?
We can now construct the action and the semiclassical approximation which
appears to be the exact solution of the quantum problem [9]. Hence, with-
out the potential, the classical limit is trivial. It becomes non-trivial if the
potential is present.

There are two approaches to the semiclassical expansion:

i) We transform first the Schrédinger equation using a solution of the
Hamilton-Jacobi equation, express the solution by a modified Feynman
integral and subsequently estimate the remainder.

ii) We make a shift of variables in the Feynman integral using the classical
solution and then estimate the remainder.

The methods i)-ii) lead to the same result but they require different assump-
tions to justify the estimates. Let us begin with the first method. Assume
that Wj is the solution (with the initial condition W) of the Hamilton-Jacobi
equation on G with a scalar potential V:

1
0 Ws + 5—(VWe, YW,) +V =0. (24)



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Feynman Integral on a Group 137

The scalar product in Eq. (24) is with respect to the Riemannian metric on
G. Let us consider a solution of the Schrodinger equation with the initial
condition 9 = exp(iWW/h)¢. Then, the solution of the Schrodinger equation
can be expressed in the form ¢; = exp(iW;/h)¢;, where ¢y is the solution of
the equation

ih 1 1
85(255 = %AGQ% - E(VW& v¢s) + %(AGWS)Cﬁs- (25)
On a formal level we may neglect the second-order differential operator in
Eq. (25) in the limit # — 0. Then, the limit i — 0 of the solution of Eq. (25)
is determined by the classical flow. In order to make the formal argument
rigorous as well as to derive an expansion in A it is useful to express the

solution of Eq. (25) by a Markov process

o= Bl (g [ Gawiicnas) o], oo

where the process (s(z) is defined for 0 < s < ¢ as a solution of the Langevin
equation (with the initial condition x € G)

AP (5) = ——g" (C(3)) W (C(s))ds + dE () (27)

where ¢g"” is the Riemannian metric on G and ¢ denotes the Markov process
generated by ih/A\g/2m defined in a coordinate independent way in Eq. (5).
In the classical limit & — 0 the solution of Eq. (27) converges to the classical
trajectory of a particle moving on a group manifold in the potential V.
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