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We review the contribution of Hagen Kleinert’s group to the computation of the MS
renormalization group functions of four-dimensional O(N) ¢*-theory at five loops.
The structure of the B-function beyond this order is also discussed from the point
of view of recent developments in connecting knot theory with the transcendental
numbers which appear at three and higher loops as well as the large N expansion.

1 Introduction

It is a pleasure and an honour to participate in this publication celebrating
Professor Dr. Hagen Kleinert’s sixtieth birthday and to review one of his
many contributions related to multiloop calculations underlying critical phe-
nomena [1]. In particular we will recall the role a particular four-dimensional
scalar field theory plays in understanding phase transitions occuring in na-
ture. For example, ¢*-field theory endowed with an O(N) internal symmetry
in three space-time dimensions underpins the statistical properties of long
polymer chains, (N = 0), it relates to phase transitions in Ising like systems
and the physics of classical fluid liquid vapour transition, (N = 1), it deals
with Helium superfluid transition, (N = 2), and ferromagnetic systems, (N
=3) [2].

A key element to understand the physics of these various phase transi-
tions experimentally and theoretically are the fundamental critical exponents.
These are universal quantities from the point of view of the renormalization
group equation and govern the scaling behavior of, say, the specific heat or
susceptibility. Indeed they are presently being measured more accurately and
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hence current theoretical input must be ingenious enough to compete with the
progress being made. Since the critical exponents of the underlying quantum
field theory are simply related to the renormalization group functions eval-
uated at the critical coupling or temperature, the issue is one of computing
quantities such as the g-function or field anomalous dimensions to as high
a loop order as is humanly or computerly possible. There are several ap-
proaches to this problem in relation to scalar field theories such as ¢*-theory
which is renormalizable in four dimensions but superrenormalizable in three
dimensions. For instance, one can compute directly in the three-dimensional
theory (see, for example, Refs. [3-5] and references therein). Alternatively,
the four-dimensional theory can be renormalized to determine the renormal-
ization group functions in the MS scheme. These are used to deduce the
critical exponents as series in €, where d = 4 — 2¢ is the space-time dimension
which then need to be resummed since the expressions are formally divergent
or asymptotic. Indeed there are various ways of dealing with this resum-
mation problem to improve numerical accuracy for the exponents though
the standard method is Padé-Borel summation. Alternative approaches have
been developed more recently by Kleinert, for example, which are based on
a strong-coupling method of a variational technique which does not make
use of renormalization methods and has been applied to the strictly three-
dimensional model [6] and the (4 — 2¢)-dimensional model [7-9]. Numerical
results obtained for the final three-dimensional critical exponents from this
new approach are impressive and also competitive with other series improve-
ment techniques. However, the main aim of this article is to recall the com-
putation of Kleinert et al. [1] and some issues concerning the renormalization
group equations of scalar ¢*-field theories in four and other dimensions, since
resummation techniques rely heavily upon having the explicit information at
hand, as well as important recent insights into the structures which lie beyond
the five-loop results of Ref. [1].

The paper is organised as follows. Background to ¢*-theory is discussed
in Section 2, where the five-loop results of Ref. [1] are reviewed. In Section 3
the structure of the four-dimensional MS renormalization group functions at
six and more loops is examined in relation to connections with knot theory
and the large IV expansion. Concluding remarks are contained in Section 4.
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2 The ¢*Theory

The underlying quantum field theory which governs the above critical phe-
nomena is ¢*-theory whose (massless) Lagrangian is

1 1672
L = 50,030"6% + —90(¢668)°, (1)

where the field ¢§ and the coupling constant go are bare and 1 < a < N.
The factor of 1672 associated with the coupling constant is included so that
the expansion of the renormalization group functions is in terms of g rather
than the usual g/(1672). It is instructive to compare Eq. (1), reformulated
in terms of renormalized parameters, with the criticality version. Introducing
the renormalized parameters ¢ = ¢0\/Z_¢ and g = goZ4, we get

1672 _, o .a
TM4 Y92,23(0" "), (2)

L = %amaaw“ +
where Z, and Z, are computed in a regularized version of the theory. Since
the four-dimensional models are related to lower-dimensional models, one uses
here dimensional regularization where the arising singularities will appear as
poles in e. Moreover, they are subtracted in a (modified) minimal way which
allows to compute the renormalization group functions to as high a loop
order as possible. The scale fi is introduced in Eq. (2) to ensure the coupling
constant to remain dimensionless in d dimensions.

By contrast in the critical region in d dimensions the action S governing
the phase transition has a different form. If £ is some length scale at the fixed
point, then S is formally
3¢Xo2 2 o

A G))

S = /ddx 18 POM P + 5xa¢“¢“ e
2 3272g 2\

2
where the auxiliary field ¢ has been introduced in order to have a trivalent
interaction at criticality. If one ignores the higher terms, the elimination of
the trivalent interaction would restore the four-point interaction of Eq. (1).
The omitted terms involve composite operators of the fields ¢%, o and their
derivatives. Each will have its own coupling constant which will either be
relevant, irrelevant or marginal at criticality. For instance, the coupling con-
stant A\ corresponds to the coupling of the linear term in ¢. If one ignores
for the moment the presence of the scaling dimension with each term, then
the interaction which dominates the transition is o¢?. The remaining terms



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

436 J.A. Gracey

correspond to quadratic or linear terms. They are present to illustrate an
important feature of the relation of ¢*-theory to lower-dimensional models.
The additional coupling A in fact corresponds to the coupling constant of the
two-dimensional O(N) nonlinear o model whose Lagrangian can be written
in a form analogous to Eq. (1)

L = gou0ras + 3 (605 - 1) (@)
which is renormalizable in two dimensions, but whose renormalization group
functions can also be used to determine the critical exponents of the three-
dimensional transitions. The point is that, at criticality, Eq. (3) is the full
underlying theory. It is related to the boundary dimension models, where one
reduces the space-time dimensionality from four, o2 becomes irrelevant in two
dimensions whereas ¢ becomes relevant. On the contrary, when approaching
four dimensions, o2 is relevant but o becomes an irrelevant operator. In other
words both models are equivalent at the appropriate critical point of their -
function. Thus either model can be used to determine critical exponents.

The power of the scaling dimension ¢ in each term of Eq. (3) represents
the anomalous dimension of that operator which is generated by radiative
corrections in the quantum theory?®. For instance, 7 is the ¢-field anomalous
dimension and is measured experimentally. In field theory, its numerical
value is a reflection of the size of all radiative corrections. Therefore, by
simple dimensional analysis, where « is the full dimension of ¢, the results of
Refs. [10,11] are

1
a=p—1+3n (5)

where d = 2u. Likewise the anomalous dimension of the trivalent interaction
is defined to be y, giving [10,11]

B=2-n-x (6)
where g is the full ¢ field dimension. For the remaining two terms one finds

the respective scaling laws

1
X02:2,u/_25_2w7ﬁ:2u_;' (7)

2The term linear in o does not have an associated anomalous operator dimension as this
is already incorporated in its dimension 3. The scaling law which arises from this term is
recorded later.
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Having discussed the relation of the underlying theories and simply comparing
Egs. (2) and (3), there appears to be a connection with the coefficients of the
kinetic operators. This is indeed the case which is readily established through
the critical renormalization group equation and is documented, for example,
in Ref. [2]. If the anomalous dimension is y(g), it is defined from the wave
function renormalization constant through

o) = Bl k. )

where 8(g) = 10g/0f is the usual S-function. Then the critical renormaliza-
tion group equation gives in our conventions

n = 7(9e), (9)

where g, is the d-dimensional non-trivial fixed point of the ¢* B-function
which represents the underlying phase transition of the model. The other
exponents have analogous relations. For instance, in our conventions

b= - 30, o= B0, (10)
where \; is the d-dimensional non-trivial fixed point of the O(N) nonlinear
o model.

Therefore, having argued this relation to be between the usual renormal-
ization constants and the critical exponents of the phase transition, one can
provide the renormalization group functions to very high precision. The best
current state is the five-loop work of Prof. Dr. Kleinert and collaborators [1].
Earlier calculations at lower orders were carried out in Refs. [12-16]. How-
ever, some initial attempts [15,16] at the five-loop calculation contained errors
in several simple integrals which were observed and corrected in Ref. [1]. As
a testimony to the huge calculation of Ref. [1], it is worth quoting the full
five-loop MS result for the d-dimensional -function which is

2 3

—(d-a)2 g _ 9
Blg) = (d=49)3 + [N+8]% — [BN+14]5
4
+ [33N?++ 922N + 2960 + 96(5N + 22)¢(3)] %

+ [BN® — 6320N? — 80456 N — 196648

— 96(63N? 4 764N + 2332)((3) + 288(5N + 22)(N + 8)¢(4)
v

7776

1920(2N” + 55N + 186)¢(5)]
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+ [13N* +12578N? + 808496 N? + 6646336N + 13177344
— 16(9N* — 1248N> — 67640N? — 552280N — 1314336)((3)
— T68(6N? 4 59N? — 446N — 3264)C?(3)
— 288(63N° + 1388N? + 9532N + 21120)¢(4)
+ 256(305N3 + 7466 N2 + 66986 N + 165084)¢(5)
— 9600(N + 8)(2N? + 55N + 186)¢(6)

96

7

+ 112896(14N? + 189N + 526)((7)]

where ((z) is the Riemann zeta function. The term (d — 4)g, which corre-
sponds to the dimension of the coupling, has been included to demonstrate
the existence in d dimensions of a non-trivial value for g.. This was used,
together with the other renormalization group functions, to determine series
for 7, v and w, whose resummed three-dimensional values are in agreement
with experiment and other methods [1].

3 Six Loops and Beyond

Given the need for the more accurate evaluation of critical exponents be-
cause of better experimental precision it is worth reviewing insights into the
problem of tackling the extension of Eq. (11) to six loops and beyond. Two
major approaches have recently been developed which attack different parts
of the quintic polynomial in N which will appear as the six-loop coefficient
of Eq. (11). The first of these is based on the observation that there appears
to be a connection between abstract knot theory and number theory with
the value of the Feynman diagrams when calculated in dimensional regular-
ization. The initial breakthrough was by Kreimer in Ref. [17], where it was
shown that the momentum routing in a Feynman graph could be associated
with a knot link diagram. Skeining such link diagrams appropriately allowed
one to decompose these into either a set of unknots or a set of unknots plus
a prime knot. The remarkable and elegant feature which emerged was that
the simple pole in € of the corresponding Feynman diagram had only rational
numbers in the former case but in the latter situation when a prime knot was
involved, the Feynman diagram contained in addition to rationals a transcen-
dental number such as ((3). In essence [17], if a Feynman graph skeined to a
(prime) (2,n)-torus knot then its associated pole part contained ¢(n). This
beautiful connection has since been studied extensively and the higher torus
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knots contain new zeta irreducible double and triple sums [18]. For instance,
the next prime torus knot beyond the (2, n)-set is the (3, 4)-torus knot which
is associated in Feynman diagrams to the double sum

— (=prm
Us2 = Y e (12)
n>m>0

This number had previously been investigated in Refs. [19,20] where it re-
mained a puzzle since it could not be reduced to a series of products of
ordinary ((n)’s of the same level of transcendentality. In the knot context it
turns out that the braid word structure of the associated prime knot has a
simple correspondence with the nested sum structure which is not reducible
to lower ¢(n)’s [17,18]. Whilst these revolutionary ideas were developed with-
out reference to a particular field theory or its symmetry properties, it was
not clear whether such new zeta irreducible numbers would in fact arise in
the renormalization group functions of a four-dimensional theory. However,
it was shown in ¢*-theory for N = 1 in Ref. [18] that certain diagrams at six
(and seven) loops with no subgraph divergences had a non-trivial knot num-
ber structure beyond the (2,n)-torus knot level. Indeed Us o arose in that
part of the six-loop SB-function polynomial which was N-independent and its
coefficient was calculated explicitly. Therefore, computing higher-order cor-
rections to Eq. (11) would have to account for this new feature. For instance,
knowing that such structures will exist could allow one to exploit it as a basis
for performing such calculations.

The second method of gaining insight into the form of the six-loop and
higher MS S-function is to determine the coefficients of the leading and next
to leading terms of the polynomial in N at each loop order. This is pro-
vided by the large N method developed originally for the O(N) ¢ model in
Refs. [10,11,21]. There the d-dimensional critical exponents themselves were
computed in successive powers of 1/N to three terms in the series for n and
v. Since they are expressed as functions of d = 2u, one can extract through
the critical renormalization group equation information on the coefficients of
the corresponding renormalization group functions in 4 — 2¢ dimensions and
compare it with the explicit MS perturbative results as a consequence of the
critical point equivalence. To the orders each of these is computed to, there
is exact agreement between both. More importantly, this connection can be
used to gain information on the coefficients of the renormalization group func-
tions going beyond those currently calculated at the orders in 1/N which are



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

440 J.A. Gracey

available. To achieve this for four-dimensional ¢*-theory, one requires knowl-
edge of the location of the fixed point g. in d dimensions at the appropriate
order in 1/N. This therefore requires the critical exponent w at O(1/N?)
which was calculated in Ref. [22]. The method is based on the Lagrangian of
the form

302

—_—. 13
3272g (13)

1 1
L = = Méaauqsa =+ _o_asaasa _
2 2
It is used to apply the uniqueness method of integration [10,11] when com-
puting the large set of Feynman diagrams which occur at O(1/N?). Thus,
one can determine the critical exponent w as [22]

wi = (2p—1)%m (14)
and
o[ = B+ 5) (2 = 3)* (i — D [@ () + W2 ()]
’ (h—=2)*(n—3)

16p(2p — 3)°
(1 —2)3(pn—3)*m
3(4p5 — A8p* + 24113 — 549p% 4 5661 — 216) (1 — 1) 2O (1)
2(n—2)*(p—3)
+ [16p1 — 240p° + 160848 — 631617 + 158615
— 258044° + 261115* — 145081 + 27562
+ 6720 — 144)]/[(1 — 2)* (1 — 3)*]¥(n)
— [144p* — 281641 + 24792112 — 1300324t + 452961410
— 11050604° + 1936168u° — 244791047 4 2194071 4°
— 1320318° 4+ 460364u* — 434441° — 262802

+ 8208y — 864]/[2(2p0 = 3) (1 — (= 2)*(u — 3)%u] | . (15)

where w = 7% w;/N* and wy = p — 2. The various variables and functions
are defined by

2(p—2)l(2p —1)
pl (1= )3 ()
Y2u—3) + YvB—p) — Yp—1) — P(1),
O =¢'(n—1) — ¢'(1),

i
S
Il
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() =¢'(2p—3) — Y'B—p) — ' (u—1) + ¢'(1), (16)

where 9(z) = £ InI'(z) and I'(z) is the Euler I'-function. So, for example,
if we represent all orders MS ¢* 3-function at O(1/N?) as

Blg) = $(d—4)g + (@N+b)g® + > (aN+b)N"?g", (17)

r=2

then we find the new MS coefficients

ag = [29 + 528C(3) — 432¢(4)]/1866240,
ar = [61 + 80C(3) + 1584¢(4) — 1728((5)]/26873856,

ag = — [5760((6) — 6336¢(5) — 240((4)
+ 1152¢%(3) — 208((3) — 125]/376233984,
be = — [28160¢(7) — 95200¢(6) + 150336¢(5) + 6912¢(4)((3)
— 14112¢(4) — 24064¢%(3) — 11880¢(3) — 5661]/466560,
— [8520960¢(8) — 32724480((7) + 43286400((6) + 3993600¢(5)¢(3)
— 31998720¢(5) — 8663040¢(4)¢(3) — 2538432¢(4)
+ 11381760¢%(3) + 7461168¢(3) + 1125439]/403107840,
bs = — [9210880¢(9) — 41166720¢(8) + 61054080¢(7) + 4300800 (6)¢(3)
— 38500800((6) + 2995200¢(5)¢(4) — 19553280 (5)¢(3)
+ 11519040¢(5) + 17072640¢(4)¢(3) + 5863104¢(4)
+ 542720¢3(3) — 10141440¢3(3)
— 4518336((3) — 717083]/1410877440 . (18)

by

Similarly, if one represents the MS field anomalous dimension at O(1/N?) as

(oo}

v(9) = Z(C"N2 +d-N + er)Nr—zngrl7 (19)

r=1

where e; = 0, the large N results give

eo = [1560674304¢(10) — 12534896640((9) + 11070010560( (8)
+ 1732018176¢(7)¢(3) + 581961984¢(7) — 3411394560 (6)C(3)
— 2684240640¢(6) + 209534976¢%(5) — 1567752192¢(5)¢(4)
+ 1754664960¢ (5)¢(3) — 975533568 (5) — 9289728¢(4)¢(3)
(4)

(
+ 1310201856¢(4)¢(3) + 1636615872¢(4) — 137158656¢3(3)
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— 1708996608¢%(3) + 294403968((3)
— 898007040, — 341350433]/1950396973056 . (20)

The previous term in the series at this order, es, was given in Ref. [23] and
like the expression for eg, it contains the zeta irreducible Us 2. However, it
is important to recognise that the first appearance of this number in the full
anomalous dimension will be at a lower-loop order than the ninth order of es.

4 Discussion

Whilst the knot theory insight into the higher-order structure of the MS
¢* four-dimensional renormalization group functions is quite impressive, true
progress in this area will only be represented by the provision of the full result
at six loops. This would require a huge amount of tedious computation since,
for instance, one needs to determine the finite part of the large number of
five-loop diagrams as they will contribute when multiplied by the one-loop
vertex counterterms. Therefore, we believe such a result will not appear in
the foreseeable future and hence Eq. (11) remains the current state of the
art. Nevertheless, to emphasise Prof. Dr. Kleinert’s continued interest and
impressive contribution to this field, it is worth mentioning an extension of
the calculation of Eq. (11) to a model which involves, in addition to an O(N)
¢*-interaction, a cubic interaction. The critical exponents for this double
coupling model were computed again to five loops in MS in Ref. [24] to explore
in detail the stability of a variety of fixed points which occur in this model
since they correspond to phase transitions in three-dimensional cubic crystals.
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