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In this contribution some recent advances in understanding the statistical mechan-
ics of topologically linked polymers will be reviewed. This is an interdisciplinary
subject in which polymer physics, knot theory, and field theories meet together.
Hopefully, we will convince more polymer physicists that field theories and knot
theory are useful tools for their research and, on the other side, attract more the-
oretical physicists and mathematicians to polymer physics.

1 Foreword

Professor Hagen Kleinert is certainly one of the most brilliant contemporary
scientists. One can hardly find a sector of theoretical physics in which he has
not contributed with outstanding results. His books, constantly updated, are
an invaluable source of information for many researchers. Coworking with
him is a pleasure, even if sometimes it is not easy to cope with the amount of
brilliant ideas and quick solutions of difficult problems which, miraculously,
he is able to produce in a short time.

His achievements in polymer physics and in the theory of random walks
are too many to be listed here (see for instance Refs. [1,2]). In my opinion,
the most important of them has been the formulation of the problem of topo-
logical entanglement in terms of Chern-Simons (CS) field theories [2]. Here I
will talk about a joint work on the statistical mechanics of topological poly-
mers. This has led to the first quantitative physical prediction that could be
extracted from a topological field theory.
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2 A Brief Introduction to the Physics of Polymers

2.1 Introduction to Polymers

In our everyday experience we are constantly in contact with synthetic poly-
mers like plastics, rubbers etc., without mentioning the fundamental role for
the existence of all living beings played by biopolymers like DNA, proteins,
and viruses. The marvelous properties of polymer materials and their out-
standing performances attract considerable interest from both chemists and
physicists. A starting point to the vast realm of polymers from a physicist
point of view is given in Ref. [3]. At a more specialized level, there are
other excellent books (see Refs. [1,2,4]). A clear and concise explanation of
advanced techniques of polymer physics can also be found in recent review
articles, as for example Ref. [5].

Polymers are macromolecules composed of many units consisting of par-
ticular molecules called monomers. The latter are able to join together via
covalent bonds forming very long chains. Artificial polymers may contain
up to 16 000 monomers, while a biopolymer arrives to the astounding num-
ber of 10! (ten billions!) monomers. The chains have macroscopic lengths
which can be as long as a few meters in the case of biopolymers. On the
contrary, in the remaining two dimensions their section is of the same size as
the monomers, i.e. it amounts to a few Angstroms. Thus, polymers may be
treated as nearly one-dimensional objects.

Polymerized materials appear in a variety of forms with strikingly different
features. For instance, plastics and rubbers are both solids, but certainly
they do not have the same behavior under stretching. For this reason, in
order to classify polymers, it is better to introduce the concept of phases
instead of using the more traditional division in gas, liquid, and solid states.
Four possible phases of polymers are distinguished [3]: viscous, elastic, semi-
crystalline, and glassy phases. In the following, the viscous phase will be
mainly discussed, which is liquid and contains the physically interesting cases
of polymer melts and solutions.

2.2 Polymers and Physics

What opens the way to physics is the fact that, to a large extent, the dif-
ferences in the macroscopical properties of polymer systems are not due to
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the chemical composition of the monomers.® This is the so-called universal
behavior of polymers. The main reason for such a universality is that poly-
mers are almost macroscopical objects in one direction. At scales which are
much larger than the monomer size, they can be considered for all practical
purposes as very long and flexible tubes. Incidentally, this makes the study
of polymer liquids easier than that of normal liquids, where the motion of
a molecule depends on the motion of its nearest neighbors and on that of
its next-to-nearest neighbors etc. Instead, the action of each monomer is
“averaged” over all the chain length.

The flexibility of polymers is negligible at short distances, but after some
monomer lengths it starts to show up. Thus, there should be a critical length
a such that any segment shorter than a can be regarded as rigid. One usually
calls a the length of the Kuhn segment, after its discoverer; it is a parameter
which depends on the temperature. Typical experimental values of a are
Inm for the simplest synthetic chains and about 100 nm for DNA. It can
also be shown that the memory of the orientation of a given monomer gets
completely lost after a distance greater than a/2. As a consequence, it is
possible to describe a vast class of polymers using a model of freely joint
segments of equal length a. In this picture polymers are treated as random
chains subjected to thermal fluctuations. Of course, there are a few different
mechanisms of flexibility, which make some macromolecules more rigid than
others. Some methods to take into account the rigidity of the joints are
reported in Refs. [2,6].

Still an important question has been left unanswered. What is driving
the behavior of polymers at large scales if not their chemical compositions?
The answer is: the entropy of the system. In fact, the computation of the
entropy and of the free energy is the fundamental problem of the statistical
mechanics of macromolecules. To understand how entropy is relevant for
describing polymer systems, it is sufficient to consider the example of a single
chain. The trajectory of an unstretched chain is able to entangle in an infinite
number of different configurations like the path of a particle subjected to
random walk. When it starts to get stretched, however, the entanglement
freedom decreases, so that this simple system moves from a more probable
state (realized in more different ways) to a less probable one (realized in fewer

20f course, this claim should not be taken in a too strict sense. For instance polyelec-
trolytes, i.e. polymers in which the monomers are charged, have a different behavior with
respect to uncharged polymers.
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ways). In the limit in which the chain is completely stretched, it becomes a
straight line which has no freedom at all. Clearly, a stretched chain will
attempt to return to the most probable state, reacting to the stress with
an opposite elastic force. Indeed, the elasticity of polymer systems can be
explained in terms of entropy alone.

2.3 Polymers and Field Theories

Let us assume that our system of polymers is at equilibrium and at constant
temperature 7. To compute the entropy and free energy, it is necessary to
sum over all possible trajectories of polymers using numerical or path-integral
techniques.? In either case, we apply the above large-scale picture of polymers
as random chains. The chain length L, the number n of freely joint segments
and the Kuhn length a are related together by L = na.

Let us remember at this point that we are talking about polymers in
the liquid state. In the standard theory of fluids, it is better to deal with
densities and currents instead of following the trajectory of each molecule.
In the case of polymers it is also more convenient to work with monomer
densities and currents. Besides, the density of monomers is easily controlled
in the laboratory, while it is more difficult to measure the average polymer
conformations in space. The passage from trajectories to monomer densities
is analogous to the passage from first to second quantization in quantum
mechanics. This procedure will be explained later.

One advantage of having a field theoretic model of polymer liquids is that
it is possible to apply sophisticated techniques already developed in high en-
ergy and condensed matter physics to study critical phenomena [1]. In fact,
even at constant temperature polymers have still a non-trivial critical behav-
ior with respect to physical parameters like polymer length and monomer
density. Field theories have played a crucial role in the achievement of a
satisfactory microscopical model of the physics of linear (unentangled) open
chains [7]. Some computations of the critical exponent of polymers with field
theoretical methods are performed in Ref. [2].

Last but not least, we may expect the existence of something fundamental
like a gauge principle behind the universality of the behavior of polymers. The
first gauge field theory of polymers has been constructed in Ref. [8]. In the
following we will see that topologically linked polymers are deeply related to

bPath-integral techniques imply a continuous limit in which the finite monomer size is
neglected because it is very small compared with the total length of the polymer.
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topological gauge field theories.

3 The Problem of Topological Entanglement in Polymer Physics

3.1 Polymers and Knot Theory

As mentioned in the previous section, the present understanding of the sta-
tistical mechanics of linear open chains is relatively satisfactory. However,
with increasing monomer densities, polymers find it convenient to entangle
for entropy reasons. In principle, higher densities can be tackled in field the-
ory using scaling arguments. However, in this way one may easily overlook
the appearance of new effects like for instance the topological ones. In fact,
both in natural and artificial substances there is an abundance of polymer
rings, in chemistry also called catenanes, which often are linked together to
form non-trivial topological configurations. In vivo, for example, the shape
of DNA is usually that of a ring. On the other side, in industrial processes
the formation of knots is controlled in order to obtain materials with desired
viscoelasticity properties. Since trajectories of polymers are self-avoiding and
cannot penetrate each other, once a system of polymers is created in a given
topological state, this cannot be changed. Thus there are real topological
constraints which remain stable in time. Again, entropy considerations ex-
plain the differences in the behavior of open and closed chains. These are due
to the fact that the topological constraints reduce the possible configurations
of the system.

3.2 Statistical Mechanics of Topologically Linked Polymers

Most attempts to derive a microscopical model of topological entanglement
in polymer physics are based on the so-called Edwards’ approach in which the
polymers are considered as fluctuating random chains or rings and where the
entropy is computed via path-integral techniques [9]. Moreover, one starts

with open chains having fixed ends at the points x1,x}, ..., Xy, X}, respec-
tively. The case of closed polymers is recovered at the end in the limit of
coinciding end points x1 = X}, ...,xn = X).¢

Since polymers are almost one-dimensional objects linked together, the
language of knot theory is the most adequate to discuss their topological

“The presence of fixed points is certainly a limitation because it is unphysical. Indeed,
in the laboratory polymers fluctuate freely. However, this shortcoming may be eliminated
by performing an average over all possible positions of the fixed points [10].
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states. Accordingly, we define a link as a collection of IV circles in 3 —d space.
Two links are said to be equivalent if they can be deformed one in another
without breaking any line. It is possible to classify inequivalent links with
the help of topological invariants. The latter are numbers remaining constant
under any continuous transformation which maps a given link to an equivalent
one. Clearly, topological invariants which explicitly depend on the trajectories
of the polymers are needed to distinguish the topological configurations of a
system of polymers. For physical purposes it is enough to have a finite set of
sufficiently powerful topological invariants {x} = x1, x2, - - --

At this point we consider IV linked polymers with trajectories P,..., Py
of lengths L1,..., Ly, respectively. The topological constraints are imposed
by requiring that the topological invariants {x} take given values {m} =
mi, Mo, ...: The fundamental problem of computing the entropy of the above
system is solved once the following configurational probability is known:

3=
—

=
~

Gm(z; L) = > [T (P Px) —mo)e

all paths Pi,..., Pn

of lengths Li,...,Ln
and ends in Xi,...,XN

Here, k is the Boltzmann constant and V' is the potential energy of the system,
which will be specified later. The topological relations are fixed by Dirac
d—functions.

In principle, all mathematical tools to compute Eq. (1) can be borrowed
from the theory of knots, but in practice the link invariants {x} are given in
the form of polynomials of one, two or three variables which have no evident
connection to the physical conformations of the polymers. For this reason, the
possibility of constructing knot invariants from Wilson loop amplitudes of field
theories [11] has been welcomed with excitement. In fact, these amplitudes
are correlation functions of gauge invariant and metric independent operators
which explicitly contain the trajectories of closed curves in 3 — d. Alas, in
mathematics it is sufficient to deal with static trajectories, but in the present
context one has also to sum over all polymer conformations. To this purpose,
the topological invariants obtained from field theories are too complicated to
allow the evaluation of the configurational probability (1) in any closed form.
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4 The Gaussian Approximation

4.1 The Gaussian Linking Number

Until now, the only topological invariant which has been successfully incorpo-
rated in the Edwards’ approach is the Gaussian linking number (GLN) which
is also called intersection number. For any couple of non-intersecting paths
P; and P it is defined as follows:

L g [ (o) [ () ¢ 2o =)
x(P1, Py) = 47T/0 d 1/0 ds2 %" (s1) { (s2) X x(s1) — x2(s2) 2] (2)

Here P; and P> have been parameterized in the standard way as curves in

space. The significance of the GLN has been discussed for instance in Chap. 16
of Ref. [2].

The GLN has the advantage to depend explicitly on the polymer trajec-
tories, but it is relatively weak in distinguishing different topological config-
urations. Strictly speaking, it can be used with high accuracy only when the
monomer density is so low that the polymers cannot be linked together in a
too complex way.

4.2 The Interactions Acting on the Monomers

Here we are rather lucky, because only the so-called repulsive steric inter-
actions act on the monomers and thus contribute to the potential energy
V of Eq. (1). These short range forces are responsible for the fact that
the polymers cannot penetrate each other. When two monomers get too
close, they experience an infinite potential barrier which causes the repul-
sion. Thus, the potential energy of the polymers can be written in terms of

Dirac §—functions:d

N 0 L; L
_ Yij ‘ ! 3) (i j
vy 2a2/0 dsi/o ds; 53 (x1 (s1) — % (s5)). (3)

ij=1

This completes the definition of the configurational probability given in
Eq. (1). Are there really no other relevant interactions? The correct an-
swer is yes, there are still the topological interactions necessary to maintain
the system in a given topological state. To see how topological forces work

dWe suppose that the energy involved in the thermal fluctuations is so high that the
monomers do not see the finest details of the two-body potentials.
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on monomers, we rewrite the product of d—functions in Eq. (1) in the Fourier
representation as follows:

H5(XU<P1--PN)_mU):/%e}(p{zi)\a [mo_XU(Pl--PN)}}- (4)

Physically, A\, denotes the chemical potential corresponding to the topological
number m,. At this point we assume that the topological constraints are
imposed in the Gaussian approximation i.e. by means of the GLN’s x(F;, P;),
i# j=1,..,N. We see that now, in the exponent of Eq. (4), the x(F;, P;)
appear as two-body potentials given by Eq. (2).

4.3 A Path Integral Model of Polymers

For simplicity, only the case of two polymers will be treated here. The gen-
eralization to a system of N polymers can be found in Ref. [12]. We work
in the Gaussian approximation so that there is only one topological number
m corresponding to the GLN y (P, P,). Now it is possible to write explicitly
the configurational probability of Eq. (1) in terms of path-integral sums over
the trajectories P; and P5:°©

xl x2
G(z; L= Jim [ Dx'(s1) / | Dx*(s2)e” A5 (x(Pr, Py) = m) , (5)

where A is given by:

3 o [k
_ v =12 i
Ao = 2@; /0 %2 ds;. (6)

We notice that, following Edwards’ approach, the configurational probability
has been defined here starting from a system of open polymers’ and then
taking the limit of coincident extrema (see Section 3.2).

4.4 From Polymers to Fields

First of all, one observes that the trajectory of a randomly fluctuating chain
and the trajectory of a particle subjected to a Brownian motion have many

®Hereafter, the temperature will be incorporated in other constant numerical factors
and will thus be ignored.

fIn this case X(P1, P2) is no longer a topological invariant.
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similarities. Indeed, the action of Eq. (6) describes the free random walk
of two particles. This duality between polymers and particles is explained
in details in Ref. [1]. In this way, the statistical problem of polymers be-
comes equivalent to that of particles subjected to self-avoiding random walks
which are constrained to satisfy given topological relations. At this point,
the desired final mapping to field theories could be performed in principle ex-
ploiting the wave-particle duality present in statistical mechanics as in quan-
tum mechanics. However, a first technical difficulty arises: In this “second
quantization” procedure one encounters expressions of the kind logZ or Z 1,
where 7 is the partition function of a Landau-Ginzburg field theory interact-
ing with topological fields. Such nonlinear terms can be simplified exploiting
the well known limits (method of replicas): logZ = lim,_.o(Z™ — 1)/n and
1/Z =1lim,, o 2" L.

The presence of a Dirac d—function in the configuration probability of
Eq. (5) is not a terrible obstacle, since it may always be put in the more
convenient form of Eq. (4) after a Fourier transformation. However, after
doing that, one finds that the resulting particle action (i.e. the former polymer
action) is non-Markovian. Moreover, even in the Gaussian approximation the
topological interactions give rise to a potential which couples the trajectories
in a nonlinear and complicated way (see Eq. (2)). For this reason, the “second
quantization” of such a system has been a difficult long-standing problem for
more than twenty years, which could be solved only recently with the help of
CS field theories [13].

5 A Field Theoretical Model of Polymers
Skipping all details, which can be found in Refs. [12,13], the above “second

quantization” procedure arrives at a model of linked polymers which consists
of N Landau-Ginzburg field theories of the kind

N
A= [ @[Vl mif]. ™)
i=1

with ¢ = 1,..., N, which are minimally coupled to Abelian CS fields.2 The
latter “propagate” the long-range topological interactions. In the language of

& Actually, things are a little bit more complicated than that: According to the method
of replicas, anyone of the above N systems must be replicated a number n; of times. The
physical configurational probability is then obtained in the limit of zero replicas.
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fields, the monomer density of the i—th polymer is |¢;|?, while the masses m;
are Boltzmann factors controlling the polymer lengths. The polymer lengths
approach infinity in the limit of zero masses. If also the repulsive steric
interactions are considered, one should add suitable quartic interaction terms

for the complex fields 1;, Y5

6 Applications and Conclusions

Field theories provide an exact description of a system of N fluctuating poly-
mers in terms of a topological Landau-Ginzburg model. Previous difficulties
of the Edwards’ approach have been solved by decoupling the nonlinear in-
teractions between the trajectories due to the topological potential (2) with
the help of Abelian CS fields. CS field theories are topological and enjoy
many special properties. For instance, they are supposed to have only finite
radiative corrections and their Hamiltonian is zero in the absence of couplings
with matter fields. As a consequence, it is licit to suppose that the topological
interactions do not change the critical properties of polymers. Indeed, this
has been explicitly checked in a semi-classical approximation, valid in case the
monomer density is sufficiently high to be considered as uniform [14]. In the
same approximation, it has been shown that topological forces are attractive
in agreement with experimental observations.

Moreover, the square average GLN (m?) of two fluctuating polymers may
be exactly computed by field theoretical methods [10]. With some approxi-
mations, this result has been applied to estimate the average square number
of intersections (m?) formed in a solution by a test polymer P of length L
with the other polymers [10]:

a’pL

18mams

(m?) ~ (8)
Here p represents the average mass density of the polymers per unit volume
and m, is the mass of a single segment. Eq. (8), which is valid in the limit
L > 1, provides an approximate formula for the probability of knot formation
inside polymer solutions. The relation (8) has been obtained after averaging
over all possible fixed points (see Section 3.2). Curiously, if a segment of P
is anchored at a given location x, (m?) does no longer depend on L! This
difference can be explained by the fact that topological interactions are at-
tractive. Since knotted polymers get closer than unknotted ones, the chance
increases that they become more and more topologically entangled. On the
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contrary, if their trajectories are fixed at some points, the attractive forces
become irrelevant.
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