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The operator method and the cumulant expansion are used for the approximate
calculation of partition functions and free energy in quantum statistics. It is shown
for some model systems that the zeroth approximation of the method interpolates
these values with rather good accuracy in the entire range of both the Hamiltonian
parameters and temperature. The proposed method allows one to calculate also
the corrections to the zeroth approximation.

1 Introduction

An important contribution of Professor Hagen Kleinert and his research group
concerns the development of non-perturbative methods for quantum field the-
ory and quantum statistics [1]. His analysis of this problem is based mainly
on the functional formulation of quantum mechanics. The Green function
and the density matrix are the main objects in such an approach and that
allows one to calculate the observable physical values directly, without an in-
termediate calculation of the energy spectrum for all stationary states of the
system. Unfortunately, this great advantage of the method is rather restricted
for the non-perturbative theories because of the difficulties when calculating
the path integrals with non-quadratic action.

On the other hand, the operator method (OM) can be used for the non-
perturbative solution of the Schrédinger equation [2]. It permits one to find
the uniformly fitted interpolation and convergent series for eigenvalues of
quite complicated Hamiltonians. But this approach is rather difficult for
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calculations in quantum statistics, where the physical values are defined by
the energy spectrum as a whole.

The purpose of the present work is to generalize the OM for the calculation
of thermodynamic values in quantum statistics. Namely, we will show that
the application of OM for the eigenvalues together with the cumulant expan-
sion [3] for the summation on the quantum numbers of the system permits us
to calculate the uniformly suitable estimation for the partition function and
free energy and to find the second-order corrections for them in the entire
range of temperature and Hamiltonian parameters.

2 Formulation of the Problem

First we want to define more precisely what we mean under “uniformly suit-
able estimation” (USE). Let us consider some physical variable with eigenval-
ues F,,(\) depending on the quantum number n and the physical parameter .
Let us also take the function F{”’()) as the USE for F,()) with the following
inequality being fulfilled in the entire range of variation of n and A:

FO0) — F())

00 < €O, (1)

Here the parameter £(9) < 1 is supposed to be independent on the values n, A
and defines the accuracy of USE. In principle, we also suppose that there is a
method for calculating a sequence of the functions £ (X) corresponding to

the decreasing sequence of the parameters £(*);s =0,1,2, ..., so that
lim F(\) = F,()\). (2)
§—00

It seems that the definition in Eq. (1) is not constructive because the exact
values Fy, () are unknown. However, there are several possibilities to estimate
the value £(©), In particular, one can compare the asymptotic series for F, (\)
in different limiting cases of the parameter or the quantum number with the
corresponding expansions of the function F,(lo)(/\). Besides, the difference
between F" (M) and £ (\) can also be considered as an estimation for £(°).
As an example, we mention the USE for the eigenvalues of the Hamiltonian
for various physical systems calculated on the basis of the OM [1,4,5].

Let us consider from this point of view the thermodynamic perturbation
theory in the Schrédinger representation of quantum statistics. Usually it is
formulated for the free energy of the system [6] and the leading terms are the
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following

FO\B) = Fy+ AZ Vi + 223" S E‘(/O’”” ;"(’g

n m#n
+%ﬂ)\2 (Zn: Vnnwn> ng W, cee (3)

Here we have introduced = 1/kpT, where T is the temperature and k
the Boltzmann constant; F, Fy are the exact and approximate free energies
respectively; E7(10) are the eigenvalues of the unperturbed Hamiltonian and
Vinn are the matrix elements of the perturbation operator with the following
form of the total Hamiltonian

H=Hy+\V, (4)

and w,, = exp [B(Fp — E,(IO))} is the unperturbed density matrix.

With any fixed number of terms, these series do not yield the free energy in
the whole range of the temperature and the perturbation parameter even for
the simplest cases. Let us illustrate this by means of the model Hamiltonian
used in Ref. [7] for the analysis of convergence of usual perturbation series

H=Hy+\V = 2(p + 27%) + A2,

1 1
EO® =n4+ =, Fy=—In[2sinh(53/2)],

2 B
++y/n(n— 1)5m,n_2} , (5)

with 6,,,, being the Kronecker symbol.

Certainly, the exact free energy is well known for this model (F =
In [2sinh (3/2v1 + 2))]/3) but if we use these matrix elements in formula
(3), rather simple calculations lead to the following result

F(\B) = % In [2sinh 8/2] + % coth 3/2

2

f% 1+ coth 8/2 + 1+28) 4.  (6)

1
2sinh? 3/2



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

330 I.D. Feranchuk and A. lvanov

It is evident that this series does not satisfy the USE criterions in the plane
of both parameters. In the low-temperature limit (8 — o), formula (6) leads
to the power series of A for the ground-state energy and this series diverges
in the range of A > 1/2 because of a singular point of the exact eigenvalue [7]
in the complex plane of A\. When the temperature increases (8 — 0), the
second-order correction becomes singular (~ —\2/4/3%), although the exact
free energy has no similar singularity.

So, instead of Eq. (3), our objective is to formulate another regular method
which permits to find the USE for the free energy of the quantum system with
an arbitrary energy spectrum F(n).

3 Cumulant Expansion for the Quantum Partition Function

The partition function of some quantum system,
Z(8) = _ exp[~BE(n)], (7)
n=0

can be represented in the operator form. Let us introduce the basic set of the
state vectors as the eigenfunctions of the excitation number operator

fln) = a*taln) = nn), (8)

with the creation @™ and annihilation @ operators, corresponding to the har-
monic oscillator with arbitrary frequency w.
Then, we can write

Z(B) = (v|exp[=BE(R) + vi = In N (v)][v). (9)

Here |v) is the normalized state vector depending on the arbitrary parameter
v having the physical meaning of the inverse temperature:

[v) = +/N(v) Z e " In), Nw)=1—-¢". (10)

Let us remind that the cumulant expansion is valid for an arbitrary exponen-
tial operator when averaging any normalized state vector [3],

(exp(A)) = exp [Z %] ,

n=1

(11)
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where the cumulants K, are expressed in terms of the moments of the oper-
ator A. This expansion is the strict one and every cumulant corresponds to
the partial summation of usual power series. The first few terms in Eq. (11)
are [3]

= (4),
= (A4%) — (A2, (12)
=<1213> 3(A)(A%) + 2(A)°.

If we apply now two terms of the cumulant expansion to the partition function,
the representation (9) can be transformed as

2(8) = 2(5,0) = exp | (o] Rlo) ~In N(w) + 5 ({0l ) — <v|R|v>2)} ,
R = —BE(i) + vi. (13)

A further analytical consideration is possible if we suppose that the fluctua-
tion of the number of excitations with respect to its averaged value is limited
in the entire range of the temperature; the self-consistency of this assump-
tion will be tested by the final result. Then all values in formula (13) can
be expanded in the series of this fluctuation and the following result can be
obtained up to second order:

Z(3,v) ~ exp{ — BE(7i) + v —In N (v)

At 1)

) (8" ) + E@E" () + (8 ®) ~ 0] [ (10)

Here the value 7 has the physical meaning of the averaged number of excita-
tions and it is defined by the formula

e v n

n — _— —U: . ].5
R € n+1 (15)

A more convenient way is to consider the value i as the variational parameter
instead of v and to find 7 = 7(3) from the minimum condition for the free
energy calculated in the zeroth order of the cumulant expansion. In that way
the following expansion can be obtained with the desired accuracy:

ﬂm:—%mﬂm:F@+AF+m,
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FO — B(R) - %[(ﬁ—kl)ln(ﬁ—kl) Al (16)
aF = 0D prion 4+ EM)]

The value 7i(3) in the formula (16) should be calculated as the solution of the
equation

n—+1

BE'(n) =In (17)
The formulas (16) and (17) define the USE for the free energy of the quantum
system with known energy spectrum. They can be generalized for systems
with several degrees of freedom.

4 Operator Method for the Estimation of the Eigenvalues

In order to make the above result in practice more effective, it should be
supplemented by some uniformly suitable estimation for the eigenvalues con-
sidered as a function of quantum numbers and parameters of the Hamiltonian
H of the system. For this purpose we use the zeroth approximation of the
OM [2] when the same operators @, @™, used in formula (8), are introduced to
H by means of the canonical transformation for the operators of coordinate
and momentum

1
i=—(G+a" p=—iy/=(@a—a" 18
(), 5= —iyf5@-at), (18)
with the frequency w considered as variational parameter.
Then one has to select, in the total Hamiltonian, that part Hg which is

diagonal with respect to the excitation number operator . = a™a:

S

H:ﬁo(ﬁ)-f—f[l, [ﬁo,ﬁ] = 0. (19)

Thus the OM zeroth approximation for the energy levels of the system is
defined as the evident eigenvalues of the operator

Holn) = E©) (n,w,)[n). (20)

The frequency parameters w,, are the solutions of the variational equations
for every quantum number

IEO (n,w,)

Own,

—0. (21)
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As shown for a number of physical systems [2,4,5], the function E© (n,w,)
defines the USE for the exact energy spectrum with rather good accuracy.
Thus, Egs. (20) and (21), together with (16) and (17), permit us to calculate
the USE for the quantum free energy as the solution of the system of algebraic
equations.

In order to illustrate how this method works, let us consider the Hamil-
tonian corresponding to the problem of the anharmonic oscillator,

- 1
H= 5(1[32 + 22) + pua? + Azt (22)

In this case the transformation (18) leads to the function

o+ 1 1 3\
EO(n,w,) = ”j wn+ —(1+2p)| + ?(an +2n+1).  (23)

The parameter w,, is the solution of the cubic equation

6A(2n* + 2n + 1)

—0. (24)

Then Eq. (17) for the averaged number of the excitations, i.e. the saddle point
for the partition function, reads

Bl1 o 3\ o n+1
5 —ﬁ(wﬁ+1+2u)+w—%(2n+l) =In — (25)
and the free energy takes the following form:
1 142 1 142
F(O)(ﬂaA:u):_ﬁ Wn — i = + 3 w'ﬁ+ i K
4 n 8 W,
3 1
——n(2n+1) — =Inn. 26
5 %n( n+1) 3 nn (26)

In this work, we restrict ourselves to analytical calculations only. Let us
consider some limiting cases for the solutions of equations (22) to (24). If, for
example, the anharmonic parameter X is zero, equations (22) and (23) lead
to the exact values

1
wn = /1424, EO(n,w,)=E, =/1+2pu (n+ 5) (27)

Eq. (24) has also the analytical solution

e*l/

n= 177, V:B\/1+2,U/. (28)

e*l/
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When substituting this value, Eq. (16) transforms to the expression

F= %m 2sinh (3/2+/1F 270)), (29)

which coincides with the exact one as distinct from the usual thermodynamic
perturbation theory.

Let us consider also the limiting cases of low (5 — oo) and high (5 — 0)
temperature. Using these conditions one can simplify the formulae (17) and
(22) to (26) to the following form. In the case of 3 — oo and thus

n~e P <,
we have
wi — wo(1 +2p) — 61 =0,

1 142
E(n,wp) = E(0,wq) = 3 (3w0 + + M) ~ FO),

Wo

1 1+2pu
=FE'(0 =—1(3
Vo (0, wo) 4<WO+ m >,
1_3X\ 1 142 1+2
AF ~ —ﬁ—QﬁE(O,wO) >~ — <w0 — + M) (3&10 + i u) ﬁe—,@l/o’
2 wo 32 wo wo
AF 1 1+2u Bro
| == - =" v 1.
’F(O) 4 (wo wo )’ﬁe <

In the opposite case of high temperature 5 — 0 and

) 36\ /4 / 3\ 3/4
":(7) (E) >

we obtain, leaving only the major 7 part in Eq. (24) and neglecting the term
proportional to wg,
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AF

F©)

7
N
8ng <

So, the second-order corrections are small in both limiting cases. That means
that the system of algebraic equations (22) to (26) defines the USE for the
anharmonic oscillator.

Finally, the proposed method can be generalized to quantum systems with
many internal degrees of freedom. This permits to consider analytically the
thermodynamic characteristics of real molecular gases.
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