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Using a simple relativistic QFT model of scalar fields, we demonstrate that the
analytic confinement, where propagators of initial constituent particles are entire
analytic functions in the complex p2-plane, and the weak coupling constant lead
to the linear Regge behavior of two- and three-particle bound states.

1 Introduction

The problem of Regge trajectories in particle physics is an active area of in-
vestigation beginning in the 1960’s [1]. Experimental data show that meson
and baryon Regge trajectories are almost linear, though the latter can only be
approximatively linear [2]. Standard theoretical calculations which give the
linear spectrum for meson and baryon mass squares are based on a relativized
Schrédinger equation with an appropriate linearly increasing potential [3,4].
Perturbative QCD approaches have shown that Regge trajectories are non-
linear [5,6].

We show in this article, using a simple relativistic model of scalar fields,
that in the framework of QFT analytic confinement of constituent particles
(propagators are entire analytic functions in the momentum p?-space) and
weak coupling constant (the Bethe-Salpeter equation can be used) lead to
the linear Regge spectrum of bound states.

Thus, if the QCD vacuum results in analytic confinement of quarks and
gluons [7-9] and the QCD coupling constant a is small, hadron bound states
are expected to have, at least asymptotically, the linear Regge spectrum, and
masses of these states can be calculated by the Bethe-Salpeter equation.
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2 The Model

We consider a simple quantum field model with confinement and demonstrate
the properties of possible bound states that can be interpreted as standard
physical particles. Let ®(z) and ¢(z) be two scalar fields with the Lagrangian
in the Euclidean metrics

L(z) = —0*(2)S~1(O)®(x) — %@(@D*l(m)w(l‘) (1)
— gt (2)@(x)p(x) — g¢° (z)
with
S—Ho) = A—2 eAD_2, D 1(O) = A2en®,

The equation for a free field A(z) = (®(z), ¢(x)) looks like
eXA(x) =0, or e a7 A(p)=0. (2)

The solutions are A(z) = 0 (p(z) = 0 and ®(z) = 0), because the function
e P /A #£ 0, i.e. it has no zeroes for any real or complex p?. Exactly this
property means analytic confinement. The scale of the confinement region is
characterized by the parameter A. The fields ®(x) and ¢(z) can exist in a
virtual state only, so that they can be called virton fields [11]. In addition, one
can say that the field ®(z) describes constituent particles (scalar “quarks”),
and the field p(z) particles-carriers (scalar “gluons”). The parameter € < 1
means that “the mass” of “the quark” ® is much larger then “the mass”
of “the gluon” ¢. In other words, the Compton wavelength of “the massive
quark” @ is smaller than the diameter of the confinement region.
The propagators in momentum and z-spaces look like

g(pz)_p e Az, (pz)_p e Az,
A2€ A2 2 A2 7&362
S(I) = (471')2 € ’ D(I) = (47‘(’)2 e 4 (3)

They are entire analytic functions in the complex p2-plane. This guarantees
the confinement of “particles” ®(x) and ¢(z) in each perturbation order in
the dimensionless coupling constant

A= (ﬁ)z <1 (4)
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The mechanism of bound states can be described in the following way [10].
Let us consider the partition function

Z = // SPSDT S e (@T5TI®) 5 (9D ) —g(2F o) —go®

After integration over ¢ in the one-particle exchange approximation, valid for
small coupling constants X\, Z reads

7 :/ 55D+ 6—(<1>+s*1<1>)+L2[¢]+L3[<1>]+O[<I>8J, (5)
where
Lo[®] = g* (9] @1 D1205 P3),
L3[®] = g*(®] &1 D5 D@ P3T193).
Here,
‘I’;r = ®(z;), Dyj = D(z; — xj),
and

Tyog = D(a1, 2, 23) = / dy D(xy — y)D(s — y)D(s — ),

where the integration over dz; (j = 1,2,3) is implied.
The term

L4 [(I)] = g4((I)Y(I)1D12(I)3823(I)3D34(I)I®4)

is important in the Faddeev equations for a three-body problem. In our case,
it is small in comparison with L3z according to our assumption ¢ < 1.

3 Two-Particle Bound States

Two-particle bound states are defined by the term Ly which can be trans-
formed as

Ly = ¢g*(®] @21/ D13 - /D125 01).
Let us use the Gaussian representation

el :/ SBéBt e*(BiEBmH»g[(BE<I>'1*'<I>2vD12)+(vD12<I>;'<I>1B12)},

where the bilocal field B1s = B(z1, 22) is introduced.
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We substitute this representation into the partition function (5) and inte-
grate over ®. The result is

Z:/ SBOB* ¢~ (BlaBi2) 429" (BiavD1aS1y Sy \/Durat Bua)+0ls°) ()

with S0 = S(x1 — 2), and so on. We introduce the variables
T =17+, Ty =x—§

and denote B(z1,z2) = 1B(z,£). After some calculations with (3) we get
29%(B12+/D12511/ 8227/ D112 Bura/)

_ 3292A4 ’ //dmdm //d£d£ Bz, )e~ ¥ =" K(¢,&)B(', ).

Here the kernel K(,¢) can be diagonalized

K(&¢) = e M ECOHD = 3706 (©rqUo(€), (7)
Q

(for the eigenfunctions Ug(§) see the Appendix).

The numbers @ = (nl{u}) can be considered as radial n, orbital I, and
magnetic {u} = (u1, ..., i) quantum numbers.

It should be stressed that the diagonalization of the kernel K(&,¢’) is
nothing else but the solution of the Bethe-Salpeter equation in the one-boson
exchange when the propagators are defined by (3). To go to the standard
form of the Bethe-Salpeter equation, we have to introduce a new function

y) = /D(y)¥q(y) and to pass to the momentum representation [10].

Let us introduce the function

) =1 [dEUo©B@.e).  Bol) = [ do ™ Bola).  (8)

Then the Gaussian quadratic measure defining the partition function (6) gets
the form

7 =] oBaB5 oo - [ 5 P Bl ol lBor) 0 9
Q
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with

g (p?)

A 1 2n+1 2 2
RN e P I
)\20 2+\/§

The equation
1 =Tg(—Mp) (11)

defines the mass M¢g = M,,; of two-particle bound states with quantum num-
bers Q:

Mg = M2 =A*2In AT? + (2n + )A%21n(2 + V3). (12)

One can see that this spectrum has a purely linear Regge behavior.

The function 1 — I (p?) defines the Gaussian measure or kinetic term in
the functional integral (9). To represent this function in the standard form,
let us develop it in the vicinity of the point p* = —M3:

1—Tq(p®) = Zo(p® + M3) + O((p* + M3)?)
with

Q
A : 1
Zg=—Tg(-M2Z) = = — .

Thus, the kinetic term in Z [Eq. (9)] reads
(B5) [1 -~ o ()] Baw))
= Zq (BL (o) [0 + M3) + O((6* + M3)*)] Bo(p))

and after the renormalization

-1/25
Ba(p) = Z5"*Ba(p)
it gets the standard form.

4 Three-Particle Bound States

Three-particle bound states are defined by the term L3[®] in (5) which can
be transformed as

Ly = g*(®] @5 @5 /T123 - \/T12301P2®3)



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

230 G.V. Efimov
with
A2 A2 (342 2
= - ¥ (e
Tio3 = T(21, 22, 23) = ZESE e w (BE+E)
where
Ti=c4+&+E, xa=x4+E —&, T3=2x—26. (13)

We use the Gaussian representation
els = / SHSHT 67(H1Jr23Hl23)+94[(HEs\/Fl%q)l‘:I>2‘:I>3)Jr(q)f‘b;‘b;\/F1231‘1123)]7
where ®; = ®(z;), j = 1,2,3, and H = Hio3 = H(x1, 22, 3) are tri-local

fields. We substitute this representation into (5). After integration over ®,
the partition function reads

7 = //5¢5q>+ e (®FSTI®)+Ls :/ SHSH™ ef(HLBH123)+g4W[H]+O(gG)7

where

g*WH] = 6g*(H{33\/T123511/ S22/ S35 v/ T'1r213 Hirry ).
Using the notation

H(p;€) = H(p; &1.6) = /diveimH(ff +&+ 6,0+ & — &0 —28),

one can get after some calculations
4 12 dp ! 17 . . INTT (one &1
gwis) = e [ o [ ac [[ e i @onee )i e),

S(pi6,€) = e 0 Ky (€1,€]) - Ka(€a, ),

where C'is a constant and

c; 22

_ 2 el 2 5 5 5 .
K;(&,8) =e 1 (3¢5 —4€;85+857] ZUc(QJJ—)(ij)“(QJ)J)-Ugj)(%)a (j=1,2),
Q@

with ¢; =3 and ¢3 = 1, and

2
@\ GA2B+VE) ) \3+5 '




Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

Analytic Confinement and Regge Spectrum 231

Thus, we get

(HihsHi23) /

Z HQ1Q2 HQ1Q2(P)a

Q1Q2
4 dp 2\ 77
g WIH] = Z Q1Q2 EQ1+Q2( )HQle (p)s
Qle

where

Hg,q.(p //d§1d§2 Ug 0 51)UQ2 (&2)H(pi &1, &),

) 2 A 2 9 2(n1+n2)+(l1+l2)
by =X, =€ 3A% . N/ )
Q1+Q2 (p ) nl ()\30> <3+ \/5> ;

3(3+5)*
)\%C:%, n =nj + na, =1 + 5.

The Gaussian quadratic measure over the fields Hg, g, (p) = Hg(p) looks like

H(SHQ’HQ exp —/ (2:4

Q

Y HEWIL = Zu@)Ha(p) p. (14)
Q

Here Q@ = {Q1,Q2} is the condensed index and n =ny + ng and I =11 + 5.
The equation

L= S M2) (15)

defines the mass Mg = M, of three-particle bound states with quantum
numbers @ = nl{u}. The spectrum has a purely linear Regge behavior:
A 3 5
M2, = A*31n % + (2n +1)A?31n (#) . (16)
We observe that the states Ho(p) = Hg,0,(p) are degenerated, so that the
states with fixed sums n = n; + ng and | = 7 + [ have the same mass.
Now we can represent

1= 3u(p?) = Zu(* + M3) + O((p* + MB)?),
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and after the renormalization,

Holp) — Zy' *Ho(p)

has the standard form.

5 Conclusion

Finally, we can conclude that the analytic confinement leads to a reasonable
picture of bound states. Bound states exist for small coupling constants
A < Ae < 1, and their masses grow when A — 0 as

[ Ac

This means that the size of the confinement region rens ~ 1/A exceeds remark-
ably the Compton length of all bound states for small A. In other words, the
physical particles described by the fields Bg(z) and Hg(z) and all physical
transformations with them take place in the confinement region.

Analytic confinement leads to the purely linear Regge spectrum for all
two- and three-particle bound states with quantum numbers @ = (nl), and
the slope of the Regge trajectories is defined by the scale of the confinement
region A and does not depend on the coupling constant . Besides, the slopes
of two- and three-particle Regge trajectories are close to each other

M2 ~ (20 +1)-A?-2.633...,  MZ, ~ (2n+1)-A?-2.887....

This idea can be used in QCD. Let us assume that gluon vacuum QCD is
realized by the selfdual homogeneous classical field. This assumption leads
to analytic confinement of quarks and gluons, and we get the linear Regge
spectrum for quark and glueball bound states [7,8,12].
Appendix
Let us consider the kernel

K = K(y1,y2) = e~ Wit2vvz—avy 455 (17)

with

Tr K = /dy K(y,y) = /dy e 2ot o T o
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The eigenfunctions of the problem
KUg =rUq,  Q={ni{u}} = {ni{pm....u}}
or
[ e KU (u2) = roUo(n)
are the following
Ug = Unn(y) = anTz{M}(”y)(yz)%L%H) (28y%) e, (18)

Here, n, = y/+/y? and

T V2T +1) 1%/F(n+1)
B=+Va*—-"b? an—T(25)+ Tntl+2)

The functions ;3 (n) satisfy the conditions

Tigpr ot (M) = T ooy (1), Tigppps..y () =0,
1

> Ty () Tigpy (n2) = CH((mm2)),  CHO) =141,

{n}

where C}(t) are the Gegenbauer polynomials, and

272
/dn Tiguy () Ty gy (n) = 511’5@}@’}721(1 e

The eigenvalues are

b 2n+1 2
KQ = Knl = Ko+ | ———— ) ko = —7—— - (19
@ = fnt = Ko (a+m> = v
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