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We discuss discretized models of random paths and surfaces with particular em-
phasis on a rigorous analysis of the influence of rigidity terms in the action upon
the continuum properties.

1 Introduction

In the present article we study a class of models of fluctuating paths and
surfaces, whose statistical weight depends on geometric properties of the fluc-
tuating object. In particular, a rigidity dependence may be introduced in the
form of curvature dependent terms in the action functional. Our main pur-
pose is to outline results from a rigorous analysis of the scaling properties of
suitably regularized models. For random paths it turns out to be possible to
analyze in detail the scaling behavior of rigidity terms in the action. We show
that such terms are irrelevant perturbations (essentially as a consequence of
the central limit theorem), and have only an effect on the scaling limit when
the associated bare coupling constant is fine tuned to infinity. In this case,
there are non-vanishing correlations between tangents to the paths, as op-
posed to ordinary Brownian paths. It is nevertheless possible to obtain an
explicit expression for the corresponding propagator.

The situation for fluctuating surfaces is more complicated. A general
framework, analogous to that for paths, can however be set up in a straight-
forward way, and a number of general results can be obtained. Thus, there
is substantial evidence that for small values of the curvature coupling the
only possible scaling limit equals that of a simple random walk, as we ex-
plain in Section 3. This result can be viewed as some sort of generalization
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of the central limit theorem to random surfaces, although as a surface theory
the limit is degenerate. This phenomenon, in fact, makes the investigation
of rigidity enhancing mechanisms for surfaces an important, albeit difficult
issue. In particular, the question poses itself whether there exists a critical
curvature coupling at which a non-degenerate scaling limit can be obtained.
We also comment on this problem, but the results obtained so far are only
fragmentary.

It is important to note that the models we consider are without any self-
avoidance constraints, i.e. the paths and surfaces are allowed to self-intersect
and overlap arbitrarily. As such, the models are not directly interpretable as
representing fluctuating polymers or membranes, except in dimensions high
enough to render the self-avoidance constraint irrelevant. Rather, we shall
consider the models from a field- or string-theoretic point of view and regard
the discretizations as regularizations of appropriate functional integrals to be
explained below.

2 Random Paths with Rigidity

For definiteness we consider models of piecewise linear random paths, also
called random flight models. The paths will be parameterized on the interval
[0,1] and, if the path w : [0,1] — R has N linear steps, the i'th step is
parameterized linearly on the interval [(i — 1)/N,i/N] such that the path
and its parameterization are uniquely fixed by the points z; = w(i/N), i =
0,...,N. Letting 6; denote the angle between the i’th and the (i +1)’th step,
ie.

0; = arccos TiTit1 ,
I7il[rita

where
TP = Tip1 — T

we define a propagator (or two-point function) by

Gunl(z,y) =Y / 1:[ dz; exp {Z O(|lzi —zima]) + A i ¥(0;) + NN} ;
N=1 =1 =1 i=1 (1)

where we have set w(0) = x and w(1) = y. Here ¢ and 1 are suitable
continuous and non-negative functions to be specified more closely below,
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and u, A are coupling constants.

The right hand side of Eq. (1) should be viewed as an integral over all
piecewise linear paths, where each path contributes with a weight exp[—S(w)],
and the action S(w) is given by

N N-1
S(w) = Z¢(|=Tz' —xi_1]) + A Z Y(0;) + puN . (2)

This action is actually a gauge fixed and discretized form of the continuum

where w : [a,b] — R is now a (piecewise) smooth path and e : [a,b] — Ry is
an intrinsic metric on the one-dimensional manifold w. Moreover, k denotes
the extrinsic curvature of w defined as

_ Pl — (@ 9)%)e

|w]?

action

k()
Indeed, S is invariant under the reparametrizations
t
Y=plt), W)=, )=

where ¢ is an increasing diffeomorphism between intervals. A unique param-
eterization is determined by fixing the parameter interval to be [0, 1] and the
metric e(t) to be constant and equal to itts total volume 7. With this param-
eterization and w piecewise linear the two actions (2) and (3) coincide [1], if
the identification

T =a’N

is made, where a is a parameter with dimension of a length, to be viewed as
a short distance cutoff, and ¢ and 1) are dimensionless analogs of ¢g and .

Specifying ¢g and 1 suitably, one obtains the most familiar form [2] of
the action

b o 2
S(w)=/a dt (%';&' +>\ok(t)+uoe(t)> : (4)

As will be seen, however, the scaling limit is essentially independent of the
exact form of the functions ¢ and . We shall demand that the function v
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vanishes at 0, but is otherwise positive in the interval ]0, 7], such that non-
straight paths get increasingly suppressed with increasing A\. For A = 0, it
is well known that generic paths in the continuum limit are far from being
smooth, the set of such paths having Wiener measure 0. We shall see that
this still holds for any fixed value of A\, whereas for A\ — co we can obtain
different continuum limits.

First, let us discuss the domain of convergence of Eq. (1). Because of
translation invariance of G, , it is convenient to work with its Fourier trans-
form

Cun(p) = [ daGur(0.0)e (5)
and to introduce the two functions
o .
F(s) = / drrd—te=9me=isr (6)
0

and

Kx(7,7) = e~ M (O(F7)) ,
where s € R, #,7# € S9! and 6(7,7') denotes the angle between 7 and 7.
We consider K, (7,7') as the kernel of an integral operator Ky on L?(S971),
and for fixed p € R? we let F}, denote multiplication by the function F(p - #)
acting on L2(S971). One can then rewrite (1) as

Cun(p) = (11— e "F,K\) e "Fyl1) (7)

where (-]-) is the inner product in L2(S9~1) with respect to the uniform
measure df2 and where |1) is the constant function 1 on S¢~!. Henceforth,
we assume that ¢ increases sufficiently fast such that F' is finite and, moreover,
twice continuously differentiable.

Using that |1) is an eigenfunction of K with eigenvalue

163l = [ dexityeXeoee,

one finds that the susceptibility

X(p, A) = G, M)(0)
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is given by
wge P Fy
AN)=—""—— 8

where now Fy = F(0) and wy is the volume of S4~1.
It follows that y(u, ) and hence also G, (p) is finite for all p € R?
exactly, if e# > || K|/ Fo, i.e. the critical line in the (p, A)-plane is given by

e = ||Ky|| Fo (9)

which defines the critical coupling po(A) as a function of the extrinsic curva-
ture coupling .

Now, let us first fix A and consider G, x(ap) for u close to but larger
than pg(\), where we have replaced p by ap so that p, from now on, is a
dimensionful (physical) momentum variable. Expanding

Flap-7) = Fy(14ici(p-#)a — ca(p-7)%a®) + O(a?) (10)
and
Ky = [[Kx[[(P+ Ry)

where c1,cy are positive constants and P denotes the projection onto the
constant modes on S?1, one shows that |[Ry|| < 1, and hence, by Eq. (7),
that the singularity of G, (ap) as a function of u close to uo()) is solely
due to the largest eigenvalue of the leading term in the operator e #F, K
approaching 1. Moreover, since (1|(p-7#)1) = 0 one finds that only the second-
order term in Eq. (10) contributes in Eq. (7) for small a. To obtain a non-
trivial limit, this forces us to set (to leading order)

(@) = po(N) +mia’ (11)

for some positive constant m?. Then the denominator in Eq. (7) is of order
a® and it follows [1,3] that

c

lim oG, »(ap) = (12)

a—0 m ’
where ¢ and m? are positive constants.
This proves our first claim that the scaling limit of G, x(x,y) equals the
free scalar propagator, regardless of the value of \.
Next, we consider the possibility of letting A — oo and thus forcing y — oo
according to Eq. (9). In this limit one finds that all eigenvalues of || K| 1K
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tend to 1, and hence they all contribute in Eq. (7). More precisely, one
finds [1]

Ky = [[KA[L+ CL + o(CV)]

where L is the Laplace-Beltrami operator on L2(S9~1) and C()) is a positive
function tending to 0 as A — oco. Since all eigenvalues of K contribute on
the right hand side of Eq. (7), the contribution from F}, is from the first-order
term in Eq. (10). Hence, we set

pla) = po(a) + c1pra (13)
and choose A(a) such that
C(AMa)) = e1ARa,

where pgr , Ar > 0 are renormalized coupling constants. With this choice one
gets

lim aGya(ap) = (1/(ur + ArL — ip-7)7[1)

In fact, more generally, if the directions of the first and last steps are held fixed
at 7 and 7, respectively, one gets for the scaling limit of the corresponding
two-point function G, x(p; 7', 7") the result

lim aGu(ap;#',#") = (#'|(ur + ArL — ip - #) i) . (14)

This fact explicitly entails the non-vanishing correlation between tangents to
the paths, and hence also implicitly shows that the paths have acquired a
rigidity represented by the coupling constant Ar. It is an interesting open
problem to identify the measure on the space of paths associated with this
limit and to analyze in more detail the smoothness properties of generic paths.
It can be argued [1,3] that their Hausdorff dimension is 1, whereas for stan-
dard Wiener paths it is known to be 2. In fact, this difference is intimately
connected to the different scalings used in Egs. (11) and (13) via scaling
relations.

It is worth noting that the operator method sketched above can be applied
to other types of models of fluctuating paths as well, such as the Ornstein-
Uhlenbeck process [3].
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3 Random Surfaces with Rigidity

In order to extend the framework of the preceding section to random surfaces
we first describe the analogue of the action functional (3).

Let X : D — R? be a parameterized surface in R? defined on some
fixed oriented parameter domain D. By ni,...,nqs_2 we denote an oriented
orthonormal basis in the normal bundle to X (defined locally), and we let

Da;ij = §Z-j8a + n; - aan]—
be the covariant derivative in the normal bundle. Then the ezxtrinsic curvature

H of X is defined by

1
H? = Zh“bZDani - Dyn; |
[

where hgp is the first fundamental form of X.
A natural generalization of Eq. (3) is therefore

S(Xv gab) = /D d2§\/§{¢0 (gabaaX : abX)

+Aovo <gab > Dani- Dbnz‘) + Mo} ; (15)

where gqp is an intrinsic metric defined on D, and g is its determinant. Ob-
viously, S is invariant under reparametrizations

¢=0), X'(E)=X(©), gu€)0:0"(€)0ap"(€) = geal€),

where ¢ is an orientation preserving diffeomorphism between parameter do-
mains.

Specifying ¢ and 1) suitably, one obtains the most familiar form [4-6] of
the action

1
S(X, gab) = /D d*¢\/g <§gab5aX <X + Xog™ D Dani - Dyni + pio
i

(16)

To obtain a discretized form of S, we use the general idea [1] to consider
piecewise linear surfaces defined as maps from the vertices of an (oriented)
triangulation of D into R, and to assign to each such triangulation 7' the
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metric that assigns equal length a to all links and is Euclidean on each trian-
gle. This leads us to set [1,7]

Sr(X) =" [z — x5]) + Mo(0i5)] + plT] (17)
(49)
where the sum is over nearest-neighbouring pairs of vertices (i.e. links) in T,
x; is the image of the vertex i in R, 0(ij) is the angle between the normals
to the triangles sharing (ij) in the three-dimensional space spanned by the
two triangles, and |T'| is the number of triangles in T'.
The discretized model is then defined in terms of its loop correlation func-
tions

Gux(M1s+os7m) = Z H dx; exp[—ST(X)], (18)

TeT (ma,...,mn) " i€T\OT

where v1,...,7, are polygonal loops in R%, having my, ..., m, vertices, re-
spectively, and 7 (my, ..., m,) denotes the set of abstract triangulations with
n boundary components, having my, ..., m, vertices, respectively, that are
assumed to be mapped onto 71,...,7, in the obvious way, and, of course,
integration is over interior vertices only. Interpreting the vertices in T as
locations of molecules and the first term in the action as representing pair
interactions between nearest-neighbouring molecules, the randomness of T
means that a given molecule does not have fixed neighbours. Therefore the
model is usually referred to as a fluid membrane model as opposed to crys-
talline membranes where T is fixed. Both types of models have a broad variety
of potential application ranging from biophysics to high-energy physics [8].

It is important to note first that the triangulations 7" have to be topolog-
ically constrained, since otherwise the sum in (18) is manifestly divergent [1].
Thus we assume in the following that 7' is homeomorphic to a sphere with
n holes. Under similar assumptions on the functions ¢ and @ as in the pre-
vious section one shows [1] that the loop correlation functions G\ are well
defined and finite in a convex domain B in the (u, A)-plane, independent of
the number of loops and their shape.

The boundary of B defines the critical line y = po(A\) above which the
loop correlation functions are finite. To discuss the critical behavior, it is
useful to introduce the following three quantities: the susceptibility

() = / 4Gy (10,72) -
Rd
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where v, denotes the degenerate loop consisting of the single point x. The
mass gap

1
m(p,A\) =— lim —

@] —oo |2

IOg GM,A('YOa A/:c) )
and the string tension

. 1
T( \) = — Jim I log G\ (YRxR)

where Yrx g is a square loop with sides of length R and with a number of
equidistant vertices proportional to R.

Of course, the domain B and the functions G, depend on the functions
¢ and 1, but it is expected that the critical behavior of the loop correlation
functions is essentially independent of the details of those functions. As it
turns out, however, the concrete analysis of the model is for many purposes
most conveniently carried out for the discretized version of (16),

1
Sr(X) = Z (5551 — a4+ A1~ cosﬁ(ij))> + |7 . (19)
(i)
Thus, in this case, the extrinsic curvature contribution from the link shared
by the triangles A, A’ is simply
1

EA(nA — nAr)2 = )\(l — NA - nA/) s

where na is the unit normal vector to A in the space spanned by A and A/,
and similarly for na/. The results alluded to in the following mostly refer to
this particular model.

For A = 0 there is ample evidence [1] that the scaling limit is a free scalar
field. To explain this statement in more detail, we first recall that a necessary
condition for the existence of a scaling limit is that m(u, A) — 0 as p — po(X),
and in this case the physical mass mg and the scaling of u (for fixed A) is
defined by

m(u, \) = moa . (20)

Moreover, for a scaling limit of genuine continuum surfaces one would expect
that 7(u,A) — 0 as g — pg(A) such that the physical string tension 7y,
defined by

7(u(a),\) = ma? , (21)
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is finite. It turns out [1], however, for A\ = 0, that 7(u, 0) approaches a positive
constant as u — po(0), implying an infinite continuum string tension. As a
consequence, the dominant surfaces are collapsed ones with spiky outgrowths,
effectively branched polymer-like structures. Furthermore, the scaling limit
of the two-point function G, o(70,7z). defined as in Eq. (12), exists and is
again proportional to the free scalar propagator. A thorough discussion of
these results and in particular the role of branched polymers can be found in
Ref. [1].

The question arises whether this so-called branched polymer phase or
crumpled phase of the model persists for all values of A\, as was shown for the
random walk model of the previous section. This is still an open problem, at
least from a rigorous point of view within the setup sketched above. However,
the framework allows for efficient numerical simulations [1]. Most of these
seem to indicate the existence of a critical value A, > 0 at which both the
string tension and the mass scale tend to zero, and the possibility of the
existence of a trajectory approaching (uo(\e), Ac) along which the ratio m? /7
stays constant, as demanded by (20) and (21), is not excluded.

On the other hand, perturbative expansions in 1/ have been carried
out [9 13]. To lowest order it is found that the S-function is negative for
small 1/X, and it is conceivable that there is no further zero, but this has so
far not been established.

Of course, it is of considerable interest to decide firmly which of the two
scenarios occurs, and, in case of the latter, whether it is possible by fine tuning
A to 0o to obtain a non-trivial scaling limit corresponding to (14). This is a
problem left for future research.

4 Conclusions

We have given an outline of results on the scaling properties of a class of
discretized models of fluctuating paths and surfaces with rigidity. The dis-
cretizations considered here are, of course, by no means unique, and a variety
of others have been considered. In particular, hypercubic models have played
an important role and yield results complementary to the ones discussed in
the text. We refer to the literature [1] for details.

Clearly, this article is by no means intended to be an exhaustive overview
of the theory of random surfaces, which is a field in rapid development. In
particular, the whole subject of crystalline membranes, which have been in-
vestigated by both analytical and numerical methods in recent years, has
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been left out, and so have self-avoiding membranes. We refer the reader to a
recent review [8] for an account of its fascinating aspects.
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