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The identification of the collective degrees of freedom relevant for the description of
a given macroscopic (thermo)dynamic behavior is a broad objective across branches
of physics. Statistical models and field theories describing critical phenomena lead
to several different kinds of collective excitations. We discuss the role of topological
excitations in continuous phase transitions, including recent developments in 3D.
The latter allow in principle for the construction of dual descriptions of the phase
transitions in terms of these degrees of freedom and help make contact with new
experiments aimed at measuring topological defectformation and evolution.

1 Introduction

Topological excitations are features of the spectrum of models describing crit-
ical (thermo)dynamics of many important systems. Examples are superfluids
and superconductors, (liquid) crystals, magnets and models of high energy
particle physics, which predict phase transitions in the early Universe.

Topological defects are collective excitations, largely independent of the
microscopic details of the theory. Their nature is instead determined by
broad characteristics of the underlying model like its symmetries and dimen-
sionality. Thus they give a convenient mesoscopic description of the system.
Qualitatively their importance is that they are in many known cases thermo-
dynamically inexpensive vehicles of long-range disorder. For this reason they
are typically associated with order-disorder transitions.

Topological excitations are known to be important in low spatial dimen-
sions, preventing long-range order to set in. In three spatial dimensions they

589



Fluctuating Paths and Fields, Eds. W. Janke, A. Pelster, H.-J. Schmidt, and M. Bachmann
(World Scientific, Singapore, 2001).

590 L.M.A. Bettencourt

were also suggested by Onsager [1] and Feynman [2] as the vehicles of disorder
responsible for destroying the superfluid state of liquid *He. In three spatial
dimensions order-disorder transitions in O(IN) models are of second order
and are well described by renormalization group methods. A description of
the critical phenomenon in terms of topological excitations seems therefore
unnecessary.

Independently of these considerations topological defects were proposed
as a means to solve several cosmological problems [3,4]. In this context, the
problem of determining densities and other properties of topological defects
lead to the design of experiments that search directly for these quantities.
Such experiments have now been performed in a very large range of materials
and conditions, including superfluids (*He [5] and *He [6,7]), high-T.. super-
conductors [8], liquid crystals [9], and hopefully in the near future nonlinear
optical systems [10] and atomic Bose-Einstein condensates.

Motivated by these questions we have been seeking to understand the
behavior of topological excitations at second-order transitions. This paper
will describe some of our findings together with their relevance for a dual de-
scription of the critical phenomena in terms of topological excitation creation
and/or proliferation. The dual formulation of critical phenomena in terms
of topological excitations received many important contributions by Hagen
Kleinert. These issues are reviewed in his book [11], to which the reader is
referred.

2 Low-Dimensional Cases: Defects and Long-Range Order

The simplest example of a defect is a domain wall in the Ising model (or in
a real A¢*-field theory). The domain wall divides regions of space where the
system is in one of two energetically equivalent minima. The domain wall
costs a finite amount of energy per unit area (its tension). In the Ising model
there is an exact equivalence between a description of the system in terms
of domain walls (i.e. only the sites where neighboring spins anti-align) and
directly in terms of the spins themselves. The model has a second-order phase
transition for D > 2.

In 1D, domain walls are so likely thermodynamical that they subsist in
the system all the way down to 7" = 0 in the infinite-volume limit. For this
reason the system never displays long-range order at finite temperature and
a second-order transition never occurs. This is the essence of the Mermin-
Wagner theorem.
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In 2D the Ising model can be exactly solved. The system has a second-
order transition which is associated with domain wall proliferation. The exis-
tence of walls implies local disorder in the sense that at either side of the wall
both values of the spin are realized. If a wall is small and closed onto itself
this disorder is local and the long-range order of the state will subsist - this
situation is therefore characteristic of the symmetry broken phase, below 7.
Conversely, if a wall can be produced that crosses the volume, independently
of the size of the system, then long-range order has been destroyed. This is
what happens at and above Tk.

Complicating the model so that the magnitude of the spins is also a degree
of freedom (resulting in e.g. a A¢*-model) results in a phase transition of the
same universality class - only dimensionful quantities like the value of T;. or of
correlation length change but not their functional variation of temperature.
The change in critical temperature can be traced back to the change of the
wall tension in the new model.

As we have seen in the Ising model the description of the critical phe-
nomenon in terms of the proliferation of walls or directly in terms of spins is
exact. This ceases to be true in more general circumstances.

The next important example is the Kosterlitz-Thouless (KT) transition. Tt
deals with the O(2) model in 2D. As we have seen above this model allows for
vortex solutions, in addition to other collective degrees of freedom such as spin
waves and quasi-particles. Kosterlitz and Thouless [12] and Berezinskii [13]
suggested that the transition in this model (between a disordered state at high
temperature and a state with algebraic order at low temperature) proceeds
by vortex pair separation, which, as we discussed above, leads to long-range
disorder.

At long distances, vortex solutions in 2D behave as unscreened point
charges, i.e. they have a log(r/a) potential. By mapping the vortex charge
to the electric charge one can establish the equivalence between a gas of vor-
tices and the Coulomb gas in 2D. In this process the remaining excitations
of the model were neglected. Thus the statement that the Coulomb gas de-
scribes the transition in the O(2) model is equivalent to the statement that
other degrees of freedom are irrelevant in the critical region. This is a much
stronger statement than the equivalence between the domain wall and the
spin description in the Ising model.

The Coulomb gas has a well-known transition between an insulator and a
conductor state. Conduction is associated with the presence of free charges
in the plasma whereas the insulator state is characterized by dipole bound
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states.

At low temperatures there is an energetic suppression of vortices. These
can only occur as bound pairs, which cost a vanishing amount of energy with
separation. As the temperature is increased pairs become bigger and more
frequent. As a result, screening of charges becomes more and more effective.
This process continues as the temperature is increased until a critical tem-
perature is reached such that pairs of any size can be created and the system
becomes conducting.

This effect can be seen by estimating the free energy of vortices. Start
below the KT transition and estimate the free energetic cost of adding a new
charge dipole of a given separation R to the system. The bare interaction can
be written as

V(R) = 2mps log(R/a). (1)

On the other hand, the number of states (2 available to the pair is Q =
27V R/a, where the volume V accounts for all places where the first charge
of the pair can be placed and the perimeter factor arises for all the sites the
second charge can take, at a distance R from the first in 2D. Thus the free
energy F' for the new pair is estimated to be

F(R) ~V(R) — kT log(). (2)

There is always a temperature Tkt = 27ps/kp at which it becomes possible
to create a pair of arbitrary separation. Of course, in rigorously computing
TxT one needs to take into account the interaction between the charges of
the pair and those of the existing plasma. This can be done rigorously via
the Kosterlitz-Thouless recursion relations which account for the screening of
the interaction of the new pair due to the polarizable medium. This effect
makes the potential weaker than the bare one, as can be expected on general
grounds. Thus the Coulomb gas together with the original models connected
to it by duality can in fact be solved analytically. Their predictions have been
confirmed with great success, e.g. in *He films and 2D superconductors [14].
We end this section by noting the fundamental role of the topological
excitations in the examples considered above in bringing about the critical
phenomenon. Moreover the description in terms of these excitations is sim-
pler, which made it possible to solve the resulting dual models analytically.
In what follows we will discuss whether these advantages generalize to
3D. In 3D, O(N) models always display second-order transitions, at which
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Figure 1. Typical vortex (full circles) and antivortex (open circles) configurations at high
and low temperatures in the 2D XY model. At low temperatures all vortices are in pairs
and the material is an insulator. The transition to a conductor proceeds by the nucleation
of unpaired vortices.

the characteristic length scale diverges. Then a scaling hypothesis together
with renormalization group methods allows us to compute critical exponents,
which stand in excellent agreement with experiments. The description of
the transition in terms of topological excitations seems therefore superfluous
unless it can generate new information not easily describable in terms of field
correlators.

Recently it has become clear that the existence of a description of the crit-
ical phenomena in terms of topological excitations can indeed be investigated
quantitatively.

3 What Happens in Three Spatial Dimensions?

The exploration of the role of topological excitations in 3D has recently re-
ceived much attention [15-18]. While it is still too early to form the complete
picture, many properties of the model for N = 2 are now known. This section
especially comprises a cursory description of this recent progress.

Very much independent of the details of the theory of second-order tran-
sitions questions arose in cosmology, first formulated by Kibble [3,4], about
the possibility of forming topological defects at cosmological phase transi-
tions. Motivated by these questions several experiments in condensed matter
systems were developed to test topological defect formation in the labora-
tory. Defect densities can be related to the size of the correlation length in
the vicinity of the critical point. But where do topological defects come from
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and why is it possible that almost no defects are formed if the system is cooled
from T < T.?

It is actually quite easy to answer these questions, at least in the con-
text of specific models. Consider for example “He, one of the systems where
defect formation experiments have been performed [5]. The superfluid tran-
sition is excellently described by an O(2) model in 3D. This model has a
simple partition function which can be readily sampled. One can then iden-
tify and characterize topological excitations in this model as a function of,
say, temperature. The results are shown below. The model is also relevant
for extreme type II superconductors such as all high-T,. materials.

To gauge our expectations let us follow the simple argument [19] used
above to derive the conductor-insulator transition in the Kosterlitz-Thouless
case. We will do so with a twist: it is extremely difficult to account for the
detailed interaction between string segments because of the many configu-
rations a string of a given size can take. We will therefore neglect them,
but consider a simple string that has a given finite energy per unit length (a
tension), which we call o. The partition function is

7 = N/dE Q(E)e PE, (3)

where Q(F) is the number of configurations with a given energy E. Since we
are considering non-interacting strings we only need to consider the number
of configurations of a string of length | = E/o.

To proceed we observe that a free string is equivalent to a gas of Brownian
random walks. Furthermore we require that all string loops are closed. We
regularize the problem by taking the step size to be of a given length a, which
should be at least of the order of the string’s core size. Then the number of
configurations Q(1) is

=g (3) ()

where we purposefully separated several different contributions. From left
to right, the first factor accounts for the number of possible starting points,
the second for the probability that the string will return to its origin in [/a
steps, the third removes overcounting since any point along the string is a
legitimate starting point, and the forth and final accounts for the number of
configurations of a walk of [/a steps, given that each step has access to z
states (z is, for example, the coordination number of the lattice).
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Figure 2. String densities as a function of inverse temperature [ (left), for long strings
Pinf, short loops pioop, and total piot. The transition proceeds by the creation of long
strings. The long string density jumps (right) at T' = T¢, as the length scale is taken to be
larger.

The present exercise is also valid for domain walls in 2D. Walls unlike
most strings experience short range interactions and for them the Brownian
walk approximation is actually much better.

Notice that the number of configurations is enormous: it grows exponen-
tially with the string’s length. It is the extraordinary configurational entropy
of extended topological excitations that makes them likely thermodynami-
cally. The partition function can therefore be written as

Z=N i Q(l/a)eiﬁl =A Z (é) e e*ﬂLUeff7 (5)

L/a=1 L/a=1
where

T log(z) Ty —T
6
a 7 TH ( )

Ocff = 0 —

is the effective tension or free energy of the string per unit length. Notice that
strings are exponentially suppressed at low temperatures because of their en-
ergetic cost. Thanks to the entropic contribution, however, there is a critical
(Hagedorn) temperature Ty = oa/log(z), at which the string length distri-
bution becomes scale invariant and long strings are no longer exponentially
suppressed.
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This transition is analogous to both the conductor insulator transition
in the Kosterlitz-Thouless picture (the interacting nature of strings will be
discussed below) and the wall percolation transition in the 2D Ising model.

Notice that the argument for a defect transition per se does not tell us
the order of the transition (between analytic or second order). If a defect
percolates the volume, it is clear that fluctuations of the field modulus can
occur over arbitrarily large length scales - the transition must therefore be
associated with a diverging length scale and be second order.

Non-interacting strings are rare. They exist e.g. at critical coupling in
the Abelian Higgs model. What happens when strings do interact? The
simplest case to discuss is again the vortex string in the O(2) model. As
discussed above, these interact with long-range log(R/a) potential between
any two segments. The interaction is attractive if segments have opposite
orientations (the analog of a vortex-antivortex pair) and repulsive otherwise.
Consequently strings will try to minimize their energetic cost by aligning
themselves in the most favorable configuration. Strings in the O(2) scalar
model are therefore in general self-seeking as we shall see below in more
detail. The analog of a conductor insulator transition in 3D must therefore
occur when string segments become free. Then the resulting strings loose
their self-seeking character and should become Brownian random walks.

These qualitative expectations are realized for vortex string excitations
in a complex A¢*-theory. To see this we have sampled the model’s partition
functio n and characterized its string vortex excitations at different temper-
atures. The results are shown in Figs. 2 and 3.

Figure 2 shows the string densities as a function of 3 = 1/T". Strings cease
to be exponentially suppressed at T" = T, (with T, measured via field corre-
lators). In that case the derivative of the string densities has a discontinuity.
At this same point long strings appear in the system.

What is then the quantitative character of individual strings as the tem-
perature is changed? To proceed we will assume and confirm a posteriori
that the length distribution of strings assumes the same functional form as
Eq. (5) but with temperature dependent coefficients. Thus we take the loop
length distribution to be

n(l) = Al= Ve Poerl (7)

where [ is in units of ¢ and A, 7, and oeg will be computed numerically.
The behavior of v and oeg is shown in Fig. 3, together with the distance
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Figure 3. The critical behavior of the string tension (bottom left) and the exponent v (top
left). The long string formed at the transition is approximately Brownian. The exponent
v ~ 1 (top right) for long strings is the correct Brownian value in a periodic domain. The
Brownian character of long strings can be seen directly by plotting the distance vs. number
of steps (bottom right), while short string loops remain self-seeking.

between two string segments as a function of length. Detailed study of these
quantities indicates that strings below the transition are self-seeking, but that
long strings, when produced at T = T, appear essentially as random walks.

Critical exponents measured directly in terms of strings can be related
in turn to those of the field correlators [20]. This suggests that there is a
dual model in terms of interacting strings that describes the system just as
well as the original one based on the fields. At present it is of course still
more cumbersome to compute most quantities based on such a model, in
contrast to the canonical resolution of the problem in terms of scaling and
the renormalization group.

Thus we have shown that for a A¢* U(1) model the second-order transi-
tion is accompanied by the proliferation of strings. Results by Nguyen and
Sudbg [17] and by Kajantie et al. [18] have confirmed the same picture for
the type II Abelian Higgs model and the XY magnet, which are all in the
same universality class.

The remaining question is whether the phase transition in terms of strings
can somehow be seen to be more or less fundamental than that in terms of
fields directly. This is certainly a difficult question. To answer it one would
need to construct a statistical model in the same universality class, where one
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of the degrees of freedom (the strings or the fields) would be absent.

4 Conclusions and Discussion

We discussed how topological excitations are linked to critical phenomena in
several important models. In particular the numerical investigation of models
with a proven track record in terms of critical exponents has recently revealed
that the phase transition there is accompanied by critical behavior in terms
of topological excitations.

In 3D for O(N) models, the renormalization group description of the tran-
sition is sufficient to yield thermodynamic predictions but, as we have shown,
it is a generic feature of the transition that it is accompanied by topological
excitation percolation, at least in the best studied cases for N = 1,2. It
remains unclear if either of these two perspectives for the transition is more
fundamental than the other. Depending on the experimental observable ei-
ther can become more advantageous.

The advantage of topological defects and other collective excitations is
that they provide us with a mesoscopic description of the relevant degrees of
freedom involved in the critical phenomenon. In doing so we are allowed to
disregard microscopic details of the underlying theory and obtain a simpler
effective description.
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