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Ordinarily, one demands a Hamiltonian to satisfy HT = H, where { represents the
mathematical operation of complex conjugation and matrix transposition. This
conventional hermiticity condition ensures that H has a real spectrum. Recently,
it was discovered that replacing this mathematical condition by the weaker and
more physical requirement H¥ = H, where I represents combined parity reflection
and time reversal P7, one obtains new classes of complex Hamiltonians whose
spectra are often real and positive. However, the condition of P7 symmetry alone
is not strong enough to guarantee that the spectrum of H is real. In this paper
evidence is presented to support the conjecture that the spectrum of the complex
Hamiltonian H = p? 4+ V(z)(iz)¢ (¢ > 0) will be real, positive, and discrete if (1)
V(x) is real when z is real; (2) the spectrum of H = p2? + V() is positive and
discrete; (3) the function V(z) is even [V (z) = V(—=x)]; (4) the function V (z) is
an entire function of complex x. We believe that if these conditions are satisfied
then the complex deformation H = p? + V(z)(iz)¢ of H = p? + V(z) will have a
real, positive, and discrete spectrum.
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1 Complex Hamiltonians Having Real Spectra

In a recent letter [1], a class of complex quantum mechanical Hamiltonians
H = p?> +22(iz)¢ (e real) (1)

was investigated. Despite the lack of hermiticity, the spectrum of H is real
and positive for all € > 0. As shown in Fig. 1 (and Fig. 1 of Ref. [1]) the
spectrum is discrete and each of the energy levels increases with increasing e.
The reality of the spectrum is in part a consequence of P7 invariance.

Here, the operators P and 7 represent parity reflection and time reversal.
These operators are defined by their action on the position and momentum
operators x and p:

,PZI—>7I, p— —D
T:x—x, p— —p, 11— —i. (2)

When the operators z and p are real, the canonical commutation relation
[x,p] = i is invariant under both parity reflection and time reversal. This
commutation relation remains invariant under P and 7 even if z and p are
complex provided that the above transformations hold [2].

The spectrum of the Hamiltonian (1) is obtained by solving the corre-
sponding Schrodinger equation

—¢"(2) + [2%(i2)* — EJ¢(x) =0 (3)

subject to appropriate boundary conditions imposed in the complex-x plane.
These boundary conditions are described in Ref. 1.

Note from Fig. 1 that the spectrum of the Hamiltonian (1) exhibits two
regions: When e > 0, the energy spectrum of H is real and positive. However,
a transition occurs at € = 0. As € goes below 0, the eigenvalues as functions of
€ pair off and become complex, starting with the highest-energy eigenvalues.
For negative e the spectrum contains an infinite number of complex eigenval-
ues and a finite number of real, positive eigenvalues. As e decreases, there are
fewer and fewer real eigenvalues and below approximately e = —0.57793 only
one real energy remains. This energy then begins to increase with decreasing
€ and becomes infinite as ¢ approaches —1.

In summary, the theory defined by Eq. (1) exhibits two phases, an
unbroken-symmetry phase with a purely real energy spectrum when € > 0
and a spontaneously-broken-symmetry phase with a partly real and partly
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Figure 1. Energy levels of the Hamiltonian H = p2+22(iz)€ as a function of the parameter
€. When € > 0, the spectrum is real and positive and the energy levels rise with increasing
€. The lower bound of this region, € = 0, corresponds to the harmonic oscillator, whose
energy levels are £, = 2n + 1. When —1 < € < 0, there are a finite number of real
positive eigenvalues and an infinite number of complex conjugate pairs of eigenvalues. As e
decreases from 0 to —1, the number of real eigenvalues decreases; when € < —0.57793, the
only real eigenvalue is the ground-state energy. As e approaches —17, the ground-state
energy diverges. For € < —1 there are no real eigenvalues.

complex spectrum when —1 < € < 0, the transition at ¢ = 0 can be seen in
both the quantum mechanical system and the underlying classical system [2].
We have numerically verified that the eigenfunctions of H in Eq. (1) are also
eigenfunctions of the operator P7 when ¢ > 0 [2]. However, when € < 0, the
PT symmetry of the Hamiltonian is spontaneously broken; even though P7
commutes with H, the eigenfunctions of H are not all simultaneously eigen-
functions of P7. For these eigenfunctions of H the energies are complex.
Similar qualitative features are exhibited by complex deformations of real
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Figure 2. Energy levels of the Hamiltonian H = p?4a%(iz)€ as a function of the parameter
e. This figure is similar to Fig. 1, but now there are four regions. When € > 0, the spectrum
is real and positive and it rises monotonically with increasing e. Below € = 0 there are
complex eigenvalues (except at € = —1).

Hamiltonians other than the harmonic oscillator. The class of Hamiltonians
H=p>+ :E2N(iglc)6 (4)

have the same qualitative properties as H in Eq. (1). As e decreases below
0, all of these theories exhibit a transition from an unbroken P7-symmetric
regime to a regime in which P7 symmetry is spontaneously broken. Each
of these P7-symmetric theories may be viewed as analytic continuations of
conventional Hermitian theories from real to complex phase space [2].
Consider, for example, the spectrum of an z*(ix)¢ theory (N = 2), which
is displayed in Fig. 2. This figure resembles Fig. 1 for the case NV = 1 except
that now there are four regions: When ¢ > 0, the spectrum is discrete,
real, and positive and it rises monotonically with increasing e. The lower
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bound € = 0 of this P7-symmetric region corresponds to the pure quartic
anharmonic oscillator, whose Hamiltonian is H = p? 4+ 2*. When —1 < € < 0,
PT symmetry is spontaneously broken. There are a finite number of real
positive eigenvalues and an infinite number of complex conjugate pairs of
eigenvalues; as a function of € the eigenvalues pinch off in pairs and move into
the complex plane. As e approaches —1 from above only eight real eigenvalues
remain. Just as e reaches —1 the entire spectrum reemerges from the complex

plane and becomes real. Note that at ¢ = —1 the entire spectrum agrees with
the entire spectrum in Fig. 1 at ¢ = 1. This reemergence is difficult to see
in this figure. Just below € = —1, the eigenvalues once again begin to pinch

off and disappear in pairs into the complex plane. However, this pairing is
different from the pairing in the region —1 < € < 0. Above ¢ = —1 the lower
member of a pinching pair is even and the upper member is odd (that is,
Eg and Egy combine, F1y and Ej; combine, and so on); below e = —1 this
pattern reverses (that is, E7 combines with Es, Eg combines with E1g, and so
on). As e decreases from —1 to —2, the number of real eigenvalues continues
to decrease until the only real eigenvalue is the ground-state energy. Then,
as € approaches —271, the ground-state energy diverges logarithmically. For
€ < —2 there are no real eigenvalues.

The spectrum for H = p? + 2%(iz)¢ (N = 3) is displayed in Fig. 3. This
figure resembles Fig. 2 for the case N = 2. However, now there are transitions
at both ¢ = —1 and € = —2. The spectrum is discrete, real, and positive
when € > 0 and the energy levels rise monotonically with increasing e. The
lower bound € = 0 of this P7-symmetric region corresponds to the sextic
anharmonic oscillator, whose Hamiltonian is H = p? + 8. The other four
regions are —1 < e < 0, 2 < e < —1, =3 < e < —2, and ¢ < —3. The
PT symmetry is spontaneously broken when e is negative, and the number
of real eigenvalues decreases as € becomes more negative. However, at the
boundaries ¢ = —1, — 2 there is a complete real positive spectrum. When
€ = —1, the eigenspectrum is identical to the eigenspectrum in Fig. 2 at e = 1.
For € < —3 there are no real eigenvalues.

While there is as yet no proof that the spectrum of H in Eq. (1) is real, it
is possible to gain insight regarding the reality and positivity of the spectrum
of a P7-invariant Hamiltonian H by calculating the spectral zeta function.
An exact calculation of the zeta function was done for the case ¢ = 3 by
Mezincescu [3] and this work was generalized to arbitrary ¢ > 0 by Bender
and Wang [4]. Other work has been done by Delabaere et al. [5]
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Figure 3. Energy levels of the Hamiltonian H = p2+5(iz)€ as a function of the parameter
e. This figure is similar to Fig. 2, but now there are five regions. When ¢ > 0, the spectrum
is real and positive and it rises monotonically with increasing e. Below € = 0 the spectrum
is complex except when € = —1 and € = —2.

2 Complex Deformations of Nonanalytic Potentials

PT symmetry alone is not sufficient to guarantee that the spectrum of a
Hamiltonian is real. We conjecture that analyticity of the underlying real
potential is also required. To illustrate this, we study complex deformations
of some nonanalytic potentials. In our discussion so far we have considered
complex deformations of the potentials 22, which are entire functions of z.
Let us now consider deformations of the nonanalytic potentials |z|F (P real).
We will see that the eigenvalues of the potentials |z|F (iz)€ are real only when
e = 0 (and sometimes at other isolated values of €). Thus, it appears that
deforming a nonanalytic potential destroys a crucial property of the theory;
namely, that the spectrum be real.
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Figure 4. Energy levels of the Hamiltonian H = p?+|z|? as a function of the parameter P.
This figure is similar to Fig. 1, but the eigenvalues do not pinch off and go into the complex
plane because H is Hermitian (instead, the spectrum becomes denser as P approaches 0).

We begin by examining the spectrum of the |z|” potential. The eigenval-
ues of this potential are displayed as a function of P in Fig. 4 (see Ref. [6]).
The spectrum of this potential is similar to that of the x2(iz)¢ potential for
positive € (see Fig. 1). The difference between the spectra of these two po-
tentials becomes apparent when e is large: As € — 0o, the spectrum of |z|2*¢
approaches that of the square-well potential [E, = (n + 1)?72/4], while the
energies of the x2(iz)¢ potential diverge [7].

WKB theory gives an excellent approximation to the spectrum of both real
and complex potentials and thus provides an interesting comparison. For the
22 (iz)€ potential, when e > 0, the WKB calculation must be performed in
the complex plane [8]. The turning points z+ are the roots of E—x2(ix)¢ = 0
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that analytically continue off the real axis as ¢ moves away from zero:

) 1 )
r_ = B2 '™ ar2e Ty = Eme_“"uf%_ (5)

These turning points lie in the lower-half (upper-half) a-plane when € > 0
(e <0).

The WKB phase-integral quantization condition to leading order is
(n+1/2)7 = [*"dx\/E —22(iz)c. It is crucial that this integral follows
a path along which the integral is real. When € > 0, this path lies entirely
in the lower-half z-plane and when € = 0 the path lies on the real axis. But,
when € < 0 the path is in the upper-half z-plane; it crosses the cut on the
positive imaginary axis and thus is not a continuous path joining the turning
points. Hence, WKB fails when € < 0.

When € > 0, we deform the phase-integral contour so that it follows the
rays from z_ to 0 and from 0 to z:

1 < !
(n + —) m = 2sin[r/(2 + e)]E% / ds/1— s%te.

2 Jo

We then solve for E,,:

442¢
4+e
I (38) Va(n+1/2)
. 3+
sin <2L> r (2+:>
To perform a higher-order WKB calculation we replace the phase integral by
a closed contour that encircles the path connecting the two turning points

(see Ref. 9). With Q(x) = 2%(ix)¢ — E, the next-to-leading-order WKB
quantization condition is

(rl)emsfodm it o

€T 3
48Q(x)?2

E, ~ (n — 00). (6)

where the contour C' encircles the turning points x4 and x_ in a counter-
clockwise direction. Assuming that n is large, we obtain

442¢
r (iigg) Jrn+1/2)] (2+ €)(1 + €) sin (;g)
1+

sin(ﬂ_e)r(;’iz) 67 (n+%)2(4+e)2
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Figure 5. Energy levels of the Hamiltonian H = p2+|z|(iz)€ as a function of the parameter
€. The spectrum is entirely real only when € = 0.

This is the next-to-leading-order WKB result for the energy. The correspond-
ing WKB result for the |z|>T¢ (¢ > —2) potential is quite similar:

442¢
5 F(ii‘;’i) Vr(n+1/2) o - (2+€)(1+€)00t(216>
n ™ )
r(%) 37 (n+3)" (4 +0)?
Now we perform a complex deformation of the |z|¥ potential. That is, we

consider an |z|” (iz)€ potential. Of course, since |z| is not an analytic func-
tion, we cannot define an analytic continuation of the Schrodinger eigenvalue

(9)

problem
—"(z) + |2lP (iz) Y (x) = Ev(x) (10)

into the complex z-plane. However, for sufficiently small ¢ we can allow x
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Figure 6. Energy levels as a function of the parameter € for the Hamiltonian H = p? +
|z|3(iz)€. The spectrum is real when € = 0 and € = —0.5.

to remain real and we can impose the boundary condition that ¢ (x) — 0 for
x — +oo. Specifically, we have the condition for all P that if |e| < 2, then
this boundary condition on the real x-axis may be consistently imposed to
define the eigenspectrum.

Let us consider two cases: P =1 (Fig. 5) and P = 3 (Fig. 6). Figure 5 is
quite similar to Fig. 1, and Fig. 6 resembles Fig. 2. The key features of these
figures are that (1) the lowest energy level diverges at ¢ = —P/2, and that
(2) the energy levels pinch off and move into the complex plane on both sides
of ¢ = 0. Thus, the spectrum is entirely real only when e = 0.
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