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Introducing a perturbative definition, phase space path integrals can be calculated
without slicing. This leads to a short-time expansion of the quantum mechanical
path amplitude or a high-temperature expansion of the unnormalized density ma-
trix. We use the proposed formalism to calculate the effective classical Hamiltonian
for the harmonic oscillator.

1 Introduction

Path integrals are usually evaluated by time-slicing [1], since the continuum
definition is mathematically problematic. This becomes obvious for physical
systems with nontrivial metric where reparametrization invariance has been a
problem for many years [2]. It was solved recently by Kleinert and Chervyakov
who defined path integrals perturbatively in configuration space [3] using di-
mensional regularization methods developed in the quantum theory of non-
Abelian gauge fields [4]. They found rules for calculating integrals over prod-
ucts of distributions which establish a unique procedure for a perturbative
evaluation of path integrals which fully respects parameterization invariance.
The path integral of any system is expanded around the exactly known solu-
tion for the free particle in powers of the coupling constant of the potential.

In this article we want to present an extension of this definition to phase
space and derive a short-time expansion of the Hamiltonian quantum me-
chanical time evolution amplitude. In Euclidean space, the density matrix
is obtained as a high-temperature expansion. By simple resummation, this
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series can be turned into an expansion in powers of the coupling constant of
the potential described above. As will be shown in the sequel, the knowl-
edge of an exactly known nontrivial path integral as that of a free particle is
not required. Thus, the perturbative definition presented here is completely
general. It reproduces the expansion around the free particle by a simple
resummation.

The method is then applied to calculate the effective classical Hamiltonian
of the harmonic oscillator Hy, et (po, o) by exactly summing up the pertur-
bation series. The quantity is related to the quantum statistical partition
function via the classically looking phase space integral

dzod
Zu= [ SR exp (~BH. cn(po. ) 1)

where 8 = 1/kpT is the inverse thermal energy.

2 Perturbative Definition of the Path Integral for the Density Ma-
trix

After slicing the interval [0, 4] into N +1 pieces of width e = h3/(N+1), the
unnormalized density matrix can be expressed in the continuum limit as [1]

N o NHLE oo g
- g [ e
n=1 e n=1 -

N+1
xexp{s Z H(pnaxn)/h} ; (2)

where z, = z¢ and xp, = ry4+1 are the fixed end points of the path. Upon
expanding the last exponential in powers of €/, we recognize that the zeroth-
order contribution to the density matrix (2) is an infinite product of o-
functions due to the identity

[ee]
[ e, ), ®)

This infinite product simply reduces to
lim deyn - dxy 6(xng1—aN) - 0(xa —x1)0(x1 —0) = O(Tp —X4), (4)

N—oo
—00
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which is the unperturbed contribution to the unnormalized density matrix
(2) obtained here without solving a nontrivial path integral. Thus, the phase
space path integral for the unnormalized density matrix (2) can be perturba-
tively defined as

0 (_1)n hB hB
0(h, 7o) = 8(xp — 1) + Z o /0 dry - /O dry,

n=1

X (H(p(m1),2(71)) - - H(p(Tn), 2(Tn)))g (5)

with expectation values

N N+1

i - ~ d n ipn (Tn—
<. . )0 = ngnoo |:/ dCEn:| H |:/ ;r;h e elpn( n nl)/h:| . (6)
n=1 n=1 [es}

— 00

These expectation values may be reexpressed by Feynman diagrams. This
is possible for polynomial as well as nonpolynomial functions of momentum
and position [5].

3 Restricted Partition Function and Two-Point Correlations

The trace over the unnormalized density matrix (5) of our unperturbed sys-
tem with vanishing Hamiltonian H(p,z) = 0 leads to a diverging partition
function. In addition, the classical partition function diverges with the phase
space volume. The regularization of these divergences is possible by exclud-
ing, from the phase space path integral, the zero frequency fluctuations xg
and pg of the Fourier decomposition of the periodic path z(7) and momentum
p(T), respectively [1,6]. At we end, we shall calculate the quantum statistical
partition function of any system from the classical phase space integral

dxod,

The restricted partition function in the integrand contains the Boltzmann
factor of the effective classical Hamiltonian defined by the path integral:

ZPo%0 = exp{—BHes(po, o)} = 27rh7{’Da:Dp §(zo —T)6(po — D)

hB
xexp{—% | [—i<p<f>—po>§<x<f>—xo>+H<p<T>,x<T>>}} )
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with the measure

N+1
%DmDp = A}im
n

] ®

=1 -

The quantities T and p are the temporal mean values T = fohﬂ drz(t)/hS and
5=y drp(r)/np.

As illustrated above, the unperturbed system may have a vanishing Hamil-
tonian H. The calculation of the restricted partition function for this system
to be denoted by Z§°*°, is trivial as for its density matrix in Eq. (4). A
cancellation of d-functions yields directly Z{°*® = 1.

Let us now concentrate on the correlation functions of position- and
momentum-dependent quantitites. For this purpose it is convenient to in-
troduce the generating functional

2070, 0] = 2rh 7{ DaDpd(zo — 7)3(po — P)
hB
exp {—,—11 [ ar [Fint) ) + 501000 + a0 } w)

with abbreviations Z(7) = x(1) — z¢ and p(7) = p(7) — po. The action in
the exponent contains only the trivial Euclidean eikonal S = —i [ dr pdz/07.
The calculation yields

1 hB h3
Z8 o] = exp § 7 /0 dr /0 dr' j(r)Groro(r. 7 )u(7) o, (11)

where the periodic Green function is

7

Go(r7') = - 32 {27 =) - BB[B(r — ) - O(r' 7))
-3 g ol 7). (12)

In the last line the Fourier decomposition is given with respect to Matsubara
frequencies w,,, = 2rm/hB3, omitting the zero mode. Observe the antisymme-
try GPoro(r,7') = —GPo*o (7, ).
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These Green functions possess an interesting scaling property: Substitut-
ing T = 7/0, they become independent of (3:

GPoP (7. 7)) = — = {2(7‘ -7)y—-neF-7)-0F —7)}. (13)

Introducing expectation values as

hp
(o) = 2 ]fpwpa(zoz>6<poz—a>---exp{% / dmﬁ(r)%f(r)},

(14)
the two-point functions are obtained from the functional (10) by performing
appropriate functional derivatives with respect to j(7) and v(7), respectively:

(@(1)z (1)) =0, (15)
(@(r)p(r))g™™" = Grome(r, 7'), (16)
(B(r)p(r))g"™" = 0. (17)

The off-diagonal nature of the trivial action in (14) entails that only mized
position-momentum correlations do not vanish.

4 Perturbative Expansion for Effective Classical Hamiltonian

Expanding the restricted partition function (8) in powers of the Hamiltonian,

oo B B
ZpoTo _ Z h" ' /o dﬁ--'/o dy,
X (H(p(m1),z(11)) - H(p(7y), ()5, (18)

rewriting this into a cumulant expansion, and utilizing the relation (8) be-
tween restricted partition function and effective classical Hamiltonian, we

obtain
& (<1yntt o B
Hogt(po, 20) —anl o / dn---/0 dr,
X (H(p(m1),(11)) -+ - H(p(7n), 2(Tn)) ) - (19)

Using Wick’s rule, all correlation functions can be expressed in terms of prod-
ucts of two-point functions. Since only mixed two-point functions (12) can
lead to nonvanishing contributions to the effective classical Hamiltonian, we
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use the rescaled version (13) of the Green function. The scaling transforma-
tion gives a factor 3 from each of the n integral measures. Thus the expansion
(19) is a high-temperature expansion of the effective classical Hamiltonian:

°° n+1
Heg (po, o) Zﬂn i h"n' / dry-- / dTn
<H(p(n), 2(T1)) - H(p(Ta), 2(Tu)))oe - (20)

For the following considerations it is useful to assume the Hamilton function
to be of standard form:

H(p(7),2(7)) = p*(7)/2M + gV (2(7)). (21)

We have introduced the coupling constant g of the potential. Defining the
functionals

h h
:/0 d7 p*(7)/2M, b[x]:/ﬂ A7V (2(T)), (22)

the high-temperature expansion (20) is expressed as

n+1l M
B T

n=1 k=0

In the sequel we point out how this high-temperature expansion is connected
with an expansion in powers of the coupling constant g of the potential.

5 High-Temperature Versus Weak-Coupling Expansion

Having shown that the perturbative expansion around a vanishing Hamilto-
nian leads to a perturbative series in powers of the inverse temperature in
a natural manner, we now elaborate on its relation to more customary per-
turbative expansions in powers of the coupling constant g of the potential.
Changing the order of summation in Eq. (23), we obtain

nt+k—1 [ T k —1 kL n k PoTo 1
) = 30" >t () B e,
21
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which is rewritten after explicitly evaluating the contributions for n = 0 and
k=0:

2 n+k+1
Heg(po, x0) = m + 9V (xo) Z Z nlklhn-l-k (2M)"
n=

hpB hpB
></ dn---/ / ATy - / AThqn
0 0

X (V(@(r)) - V(@(m))p* (Tis1) - 02 (Then) e+ (25)

In this expression, we have inverted the scaling transformation in (13) and
used the expectation values

hB . hp
[ e =t [ ar o = 1av). (@)

All higher-order expectations of functions which only depend on z or p are
zero, due to the vanishing of expectations of functions of Z or p in a Wick ex-
pansion into products of two-point functions (15) and (17). All other possible
contributions are disconnected.

We now observe that the expansion (25) is equal to a perturbation expan-
sion around a free-particle theory

1 > k+1 hB K3
Heg (po, v0) = m + gV (z0) B Z k'hk /0 dr /0 dr,
k=1

} (V(@(r1)) - V(@ (7)) ree,c (27)

in which cumulants are formed from expectation values
<. >free = Qth'DxDpé(xo - I)é(p(] - ]_))

hB
xexp{—%/o dr [—z( (r )—pg)%(w(ﬂ —:Uo)—l—ﬁ(p(T)—pO)ﬂ}.
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6 Effective Classical Hamiltonian of the Harmonic Oscillator

We now calculate the effective classical Hamiltonian for the harmonic oscil-
lator,
2
p 1

Hy(p,x) = bW EMW%Q’ (29)
by an exact resummation of the high-temperature expansion (23). For sys-
tematically expressing the terms of this expansion, it is useful to introduce
the following Feynman rules:

T T2 = (p(T)p(T2) )R = 3, (30)
T1 —— T2 = <il?(71)l’(?2)>gom° = mgv (31)
T1o= o = (@(TORT))RT =GP (ry ) + oo, (32)
TLome Ty = (p(F)a(T2))R0 = —GP(7y, ) + poro, (33)
e = @ =0, (34)
P = @ =, (35)

. = /Oh dr, (36)

where the current-like expectations in (34) and (35) arise from (p(7));"" = 0
and (Z(7))°" = 0, respectively. In order to simplify the calculation of the
expectation values in the high-temperature expansion of the effective classical
Hamiltonian (20), we also define operational subgraphs

— 1 " 2 (=
e =g | @ (37)
1 h
= —Mu? | AT (F), (38)

which are useful for the systematic construction of Feynman diagrams. These
diagrams are composed by attaching the legs of such subgraphs to one another
or by connecting legs with suitable currents. Note that only combinations of
different types of subgraphs lead to non-vanishing contributions, since the
connection of subgraphs of the same type,

) ; (39)
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creates a new subgraph which contains a propagator (30) or (31), respectively.
These propagators are, however, independent of 7, such that the 7-integrals
related to the vertices in these subgraphs are trivial. Thus, there does not
really exist a connection between these vertices, and the propagators (30) and
(31) can be expressed by the currents (34) and (35):

T1

T1

As a consequence, connected diagrams for n > 1 containing propagators of
type (30) or (31) must break up into disconnected parts. Analytically, this is
seen by considering for example

()T = EEDFENE™ + @F)™ @)™ (42)

The first term on the right-hand side vanishes due to Eq. (15), while the sec-
ond simply yields 22, which proves Eq. (33). This means that only Feynman
diagrams which consist of a mixture of subgraphs (37) and (38) contribute to
the effective classical Hamiltonian. To illustrate this, we discuss the first and
second order of expansion (20) in more detail.

The Feynman diagrams of the first-order contribution to the effective clas-
sical Hamiltonian are simply constructed from the subgraphs

H(l) (Do, T0) X~

1 2
thQ +2hM°" O = 2Mh +opMw
Po

2M+ M 22 (43)

where we have used the identities (40) and (41) in the second expression of
the second line. Note that the first-order term (43) obviously reproduces
the classical Hamiltonian. This is the consequence of the high-temperature
expansion (23), since only the first-order contribution is nonzero in the limit
B =1/kgT — 0. The second-order contribution reads

H(po.m0) o (oo o Yo o)

_ _% (8 ook +4 b ) (44)

S

The chain diagram is zero, while the loop diagram has the value —h*((2) /272,
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where
1
((z)=)_ — (45)
n:ln

is the ¢(-function. Thus we obtain
Hi%iﬁ(po, z0) = Bh*w?((2) /4.

This second-order contribution (44) shows the characteristic types of Feyn-
man diagrams in each order n > 1 of the expansion (20) for the harmonic
oscillator: chain and loop diagrams. In order to calculate the nth-order
contribution, we must evaluate these diagrams in a more general way. By
constructing Feynman diagrams from the product of n sums of subgraphs,

n)

H{a(po,20) o (e + —o— (v 4 —o— )oon (e e ),

n times
(46)
it turns out that only the following chain and loop diagrams contribute:
e - - »- - '/*\'
- -p-o °--- R ‘ \
*—eo-<2-o-b -0 0—4—4—*’ ; + (47)
*—o-a- -0 - -k, .\4 *

The evaluation of the chain diagrams is easily done and yields zero. An
explicit calculation in Fourier space shows that there occur Kronecker-9’s
dm,0. Since the Matsubara sum of the Green function (12) does not contain
the zero mode m = 0, all chain diagrams are zero.

A determination of the values of loop diagrams is more involved. It is obvi-
ous that loop diagrams can only be constructed in even order (n = 2,4,6,...),
since for a loop diagram with mixed propagators (32) or (33) pairs of differ-
ent subgraphs (37) and (38) are necessary. Thus we find the result that odd
orders of expansion (23) wvanish, and only loop diagrams for n = 2,4,6,...
must be calculated. Evaluating loop diagrams of nth order in Fourier space
is straightforward and entails

9 2k
Lo (g e, (1s)

2
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where k = n/2. The high-temperature expansion for the effective classical
Hamiltonian of the harmonic oscillator can then be written as

2 > k41 2k
P, 1 (=1 hw
Hoan(on.0) = 3% + Mot + 3 = 2 (32) ceam. (ao)
k=1

Substituting the ¢-function by its definition (45) and exchanging the summa-
tions, the last term in Eq. (49) can be expressed as a logarithm

i 6219—1% (%)2’c C(2k) = %m (ﬁ {1 + %D . (50)

n=1

Applying the relation

1 = 22
—sinh z = 14+ —— 51
. 11 ( + nw) , (51)
n=1

we find the more familiar form of the effective classical Hamiltonian for a

harmonic oscillator

2

P 1
Hw,eff(p07m0) = 2]31 + 5

1 hw3

2,2 e
Mo = g S S n hwi )

(52)
When performing the z¢- and po-integrations in Eq. (1), we obtain the
well-known form of the partition function of the harmonic oscillator Z,, =

1/2sinh(hw/2).

7 Summary

We have used a perturbative definition of the path integral in phase space
representation which produces an effective classical Hamiltonian for the har-
monic oscillator. Our procedure represents an alternative way to evaluate
path integrals: The unperturbed system is trivial and the calculation of ap-
propriate Feynman diagrams is simple. As a further advantage, the pertur-
bative expansion for the effective classical Hamiltonian is identical to the
high-temperature expansion used frequently in statistical mechanics.
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