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The chiral Gross-Neveu model is one of the most popular toy models for QCD. In
the past, it has been studied in detail in the large-N limit. In this paper we study
its small-N behavior at finite temperature in 2+1 dimensions. We show that at
small N the phase diagram of this model is principally different from its behavior at
N — oo. For a small number N of fermions, the model possesses two characteristic
temperatures T and T™*. That is, at small N, along with a quasiordered phase
0 < T < TkT the system possesses a very large region of precursor fluctuations
Tk < T < T* which disappear only at a temperature 7%, substantially higher
than the temperature T of the Kosterlitz-Thouless transition.

In this contribution we discuss the small-N behavior of the Gross-Neveu
(GN) [1] model with U(1)-symmetry in 2+ 1 dimensions at finite tempera-
ture. The Gross-Neveu model is a field theoretic model of zero-mass fermions
with quartic interaction, which provides us with considerable insight into the
mechanisms of spontaneous symmetry breakdown and is considered to be an
illuminating toy model for QCD. Our small-N study is motivated by recent
results in the theory of superconductivity in the regimes, where BCS mean-
field theory is not valid.

In the past years, remarkable progress was made in the theory of super-
conductivity in understanding mechanisms of symmetry breakdown in the
regimes of strong interaction and low carrier density. It was observed that, in
general, a Fermi system with attraction possesses two distinct characteristic
temperatures corresponding to pair formation and pair condensation. That is,
in a strong-coupling superconductor Cooper pairs are formed at a certain tem-
perature 1™ although there is no macroscopic occupation of zero momentum
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level and thus no phase coherence and no symmetry breakdown. The temper-
ature should be lowered to T.(< T™*) in order to make these pairs condense
and establish phase coherence. The large region T, < T' < T* where there
exist Cooper pairs but no continuous symmetry is broken is called pseudo-
gap phase (see Ref. [2] and numerous references therein). Thus the symmetry
breakdown in a strong-coupling superconductor resembles onset of long-range
order in *He, where one can also introduce formally a characteristic tempera-
ture of thermal decomposition of a He atom. However it does not mean that
this temperature is connected in any respect with the temperature of the on-
set of phase coherence. In fact, the BCS scenario, where the superconductive
phase transition can approximately be described as a pair-formation transi-
tion, is very exceptional, since there is only one characteristic temperature
T.. That is, the BCS scenario holds true only at infinitesimally weak coupling
strength or very high carrier density.

Since the original work by Bardeen, Cooper, and Schrieffer [3] in 1957, the
BCS theory has been a source of inspiration in particle physics. In particular,
it had direct influence on the construction of the Nambu-Jona-Lasinio and
Gross-Neveu models [4,5]. In this spirit, the pseudogap concept was recently
introduced to particle physics in Ref. [6], sparking recently many intensive
discussions.

Let us now return to the Gross-Neveu model. In this article we would like
to readdress the pseudogap properties of the Gross-Neveu model, extending
the initial work of Ref. [6] to finite temperatures and higher dimensions. At
finite temperatures in the limit of large IV its behavior closely resembles a
BCS superconductor [7]. We show that a very rich physical structure, similar
to the phase diagram of a strong-coupling superconductor, emerges in the
small-N limit in the chiral GN model.

The chiral GN model [1] has the following Lagrange density [8]

L= ’&aiawa + 29_;\)] |:(’(/7)a'(/}a)2 + (@ai%%)Q] s

where the index a runs from 1 to N. The fields ¢ (z) can be integrated out
yielding the collective field action (for a detailed discussion see Ref. [9]):

02+7r2

Acoll[ga 7(] =N { 290

—iTr log[id — o(x) — i’ymr]} .

This model is invariant under the continuous set of chiral O(2) transforma-
tions which rotate o and 7 fields into each other. In the large-N limit, the
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model has a second-order phase transition at which fermions acquire mass.
At zero temperature in 2+1 dimensions it is accompanied by an appearance
of a massless composite Goldstone boson (for details see e.g. Ref. [9]). In
the symmetry-broken phase the model is characterized by a typical “mexican
hat” effective potential. The propagator of the massive ¢ fluctuations can be
readily extracted and it coincides with the o-propagator of the ordinary GN
model [7,9]:

i MG )
Goror = — % [go t /(27r)3 (&2 — M) [(k—q2 —M?7]| °

—1

where M is the mass dynamically acquired by fermions. According to stan-
dard dimensional reduction arguments, the system is at finite temperature
effectively two-dimensional and thus the Coleman theorem forbids the spon-
taneous breakdown of the U(1)-symmetry. However, as it was shown by
Witten [10], this does not preclude the system from generating a fermion
mass. As it was shown in Ref. [10] by employing “modulus-phase” variables

o +im =|Ale® (1)

one can see that the system generates the fermion mass M = |A| that coin-
cides with the modulus of the complex order parameter, but its phase remains
incoherent and the correlators of the complex order parameter have algebraic
decay. Existence of the local gap modulus A does not contradict the Cole-
man theorem since A is neutral under U(1) transformations. Thus at low
temperature in 2+1 dimensions there appears an “almost” Goldstone boson
that becomes a real Goldstone boson at exactly zero temperature.

Let us here first study the effective potential of the model at finite tem-
perature in the leading-order approximation and then take into account the
next-to-leading-order corrections. Following Ref. [10], the fermion mass at
finite temperature is given by the gap equation which coincides with the gap
equation for the ordinary GN model with discrete symmetry (for detailed
calculations see Refs. [7,6,9]):

1=gotr (1)/(;27/;2%tanh (%) ) (2)

where F stands for vk2 + AZ2. In the leading-order mean-field approximation
we have a situation similar to the BCS superconductor: There is a gap that
disappears at a certain temperature which we denote by 7™ in the sequel. It
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can be expressed via the gap function at zero temperature:

_ A0
~ 2log?2’

*

(3)

Near T* the gap function has the following behavior in the mean-field ap-
proximation:

A(T) =T"4+/log24/1 — % (4)

On the other hand, at low temperatures the gap function receives an expo-
nentially small temperature correction:

A(T) = A(0) — 2T exp [#} . (5)
Let us note once more that a straightforward calculation of next-to-leading-
order corrections leads to the conclusion that the gap should be exactly zero
at any finite temperature in 2+1 dimensions. However, as shown in Ref. [10],
such a direct calculation of corrections misses the essential physics of a two-
dimensional problem. The fluctuations can be made arbitrarily weak by de-
creasing temperature in 241 dimensions (or e.g. increasing N in 2D zero
temperature calculations in Ref. [10]) and then the system possesses a very
well-defined “mexican hat” effective potential that determines the fermion
mass. Due to phase fluctuations in the degenerate valley of the potential,
the average of the complex gap function is zero, however there exists a gap
locally (i.e. in some sense the system in its low energy domain degenerates to
a nonlinear sigma model). In 241 dimensions, as the temperature approaches
zero the thermal fluctuations in the degenerate valley of the effective poten-
tial gradually vanish and at T'= 0 a local gap becomes a real gap. The most
interesting effect happens however when temperature is increased. It was
anticipated before that there is only one characteristic temperature in such
a system, namely the temperature of the Kosterlitz-Thouless (KT) transi-
tion which coincides with the temperature of the formation of the local gap.
This scenario holds true only for a very large number of field components.
In general, the model has two characteristic temperatures like in the case of
a superconductor with a pseudogap. In order to show this we have to go
beyond the mean-field approximation.
Let us make an expansion around a saddle-point solution and derive the
propagator of the imaginary part of the field A that has a pole at ¢ = 0.
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The procedure is standard and will not be reproduced here (for details see
e.g. Refs. [6,9]):

1 1 ANt
oot =% [samy o (o)) ©

The propagator (6) characterizes the stiffness of the phase fluctuations
in the degenerate minimum of the effective potential. It gives the following
expression for the kinetic term of phase fluctuations for the chiral GN model:

Pl = / degA(T) tanh (%) Vo). (7)

Now we have all the tools to find the position of the KT transition in the
chiral GN model. It is well known that the KT transition cannot be found
by straightforward perturbative methods. In order to find the KT transition
point one should first observe that the system is described by a complex
scalar field. The key feature is that the field @ is cyclic: # = 0 + 27n. In two
dimensions such a system possesses excitations of the form of vortices and
antivortices that are attracted to each other by a Coulomb potential. At low
temperatures, the vortices and antivortices form bound pairs. The grand-
canonical ensemble of the pairs exhibits quasi-long-range correlations. At a
certain temperature Tk, the vortex pairs break up, which is the Kosterlitz-
Thouless phase-disorder transition [11,12]. This transition was studied in
detail in the field theory of a pure phase field 6(x), with a Hamiltonian

B
H =00, (3)
where (3 is the stiffness of the phase fluctuations. In our case the coefficient 3
depends on the temperature and on the parameters of the GN models, namely
the number of field components and A [see Eq. (7)].

The temperature of the Kosterlitz-Thouless phase transition in the system

(8) is given by Ref. [11,12]:
T

In order to study the phase-disorder transition in the chiral GN model, we
should solve a set of equations, namely the equation for Tk (A, N) that fol-
lows from the kinetic term, and Eq. (2) for the gap modulus A(Tkr, N) that
follows from the effective potential. Thus in our case the phase transition
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is a competition of two processes, the thermal excitation of directional fluc-
tuations in the degenerate valley of the effective potential and the thermal
depletion of the stiffness coefficient.

Let us first consider the case of small N. From expressions (3), (5), (7),
and (9) we see that, in the regime of small N, Txr < T*. In this regime the
temperature corrections to the phase stiffness are exponentially suppressed.
Thus, at temperatures T < T, the asymptotic expression for the kinetic
term (7) reads

N
Hin = / 2o A0) VP, (10)
8
and the Kosterlitz-Thouless transition will take place at the temperature
N
Trr = < A(0). (11)

This is significantly lower at small N than the temperature (3) at which the
gap modulus disappears. For the ratio Txr/T* at small N we obtain:
Txr  Nlog(2)

e (12)

So with decreasing IV, the separation of Tk and T* increases. Let us now
turn to the regime where N is no longer small. Here we see from Egs. (3), (4),
(7), and (9) that Tk tends to T from below. The Hamiltonian (7) reads in

this limit near 7™:
N AT o e
Hyn = | do— 0]-. 1
in = [ doge- 200 (0 (13)

From Egs. (3), (4), (13), and (9) we find the following expression for the
behavior of Tk at large INV:

Teer = T* (1 - m> . (14)

This equation explicitly shows a merging of the temperatures T and T*
in the limit of large N. This can be interpreted as the restoration of the
“BCS-like” scenario for the quasi-condensation in the limit N — oo. The
ratio T /T* is displayed in Fig. 1.

Thus the phase diagram of the model at small N consists of the following
phases at non-zero temperature:
(i) 0 < T < Tkr: the low temperature quasi-ordered phase with bound
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Figure 1. Recovery of a “BCS-like” scenario for quasicondensation at large N in the chiral
GN model. The solid curve is the ratio of the temperature of the KT transition (T'x7) and
the characteristic temperature of the formation of the effective potential (7*). This ratio
tends from below to unity (the horizontal dashed line) as N is increasing and the region of
precursor fluctuations shrinks.

vortex-antivortex pairs,

(ii) Tkr < T < T*: the phase analogous to the pseudogap phase of super-
conductors, i.e. the chirally symmetric phase with unbound vortex-antivortex
pairs that exhibit violent precursor fluctuations and a nonzero local modulus
of the complex gap function,

(iii) T > T™*: high temperature “normal” chirally symmetric phase.

The mechanism of the phase separation is very transparent with the key
feature being the fact that the stiffness is proportional to N [see Eq. (7)].
At large N, the directional fluctuations are energetically extremely expensive
and thus, the phase transition is controlled basically by the modulus of the
order parameter. On the other hand, the stiffness is low at small N, and the
thermal excitation of the fluctuations in the degenerate valley of the effective
potential starts governing the phase transition in the system.

Now let us briefly discuss the physical meaning of T* and what is expected
to happen when the system reaches it at small N. At first, we can conclude
from simple physical reasoning in analogy with superconductivity that the
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appearance of the second characteristic temperature is very natural. Besides
the fact that the phase analogous to the intermediate phase T < T < T*
is the dominating region on a phase diagram of strong-coupling and low car-
rier density superconductors, similar effects are known in a large variety of
condensed matter systems such as excitonic condensates, Josephson junction
arrays and many other systems. One of the most illuminating examples of
the appearance of the pseudogap phase is the chiral GN model in 2+ ¢ dimen-
sions at zero temperature where this phenomenon is governed by quantum
dynamical fluctuations at small N [6]. In D = 2+ € the presence of two small
parameters in the problem has allowed to prove the existence and the dif-
ferent physical origin of two characteristic values of a renormalized coupling
constant and of the formation of an intermediate pseudogap phase [6]. We
can also observe that the mean-field approximation gives a second-order phase
transition at 7™ which is certainly an artifact since much above Tk there
are violent thermal phase fluctuations. These fluctuations should wash out
the phase transition at T* which should degenerate to a smeared crossover as
it happens in superconductors. Apparently, this crossover cannot be studied
adequately in the framework of an 1/N-expansion. The best insight into the
properties of the system in the region T < T < T™ can be obtained by
numerical simulations. Although the KT transition is very hard to observe in
simulations, the hint for the phase separation would be a gradual degradation
of the transition at 7™ with decreasing N.
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