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String representations of the Wilson loop in three-dimensional gases of SU(2) and
SU(3) Abelian-projected monopoles are discussed. It is demonstrated that the
summation over world sheets bounded by the contour of the Wilson loop is realized
by summing over branches of a certain effective multi-valued potential of monopole
densities. Finally, by virtue of the so-constructed representation of the Wilson loop,

this quantity is evaluated in the SU(2)-inspired case within the approximation of a
dilute monopole gas, which makes confinement in the model under study manifest.

1 Introduction

On the way of constructing the string representation of QCD by means of
the method of Abelian projections [1], the main results have been obtained
under the assumption of the monopole condensation. Such condensation can
be described by demanding that fluctuating monopole trajectories, forming
the grand canonical ensemble, possess several natural properties. These prop-
erties, which can be elegantly formulated in the path-integral language [2,3],
are the presence of the kinetic and mass terms of a trajectory, as well as the
short-range interaction of the trajectories.

Another way to model the monopole condensation is to consider the grand
canonical ensemble of monopoles as a Coulomb gas [2,4]. The respective
SU (2)-inspired theory then turns out to be compact QED, i.e. electrodynam-
ics with monopoles. The novel type of gauge invariance appearing in this
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theory (the so-called monopole gauge invariance) and its condensed matter
analogues have been discovered by Professor Hagen Kleinert in Ref. [5]. The
consistent local quantum field theory of electrically charged particles and
monopoles has for the first time been constructed in Refs. [5,6] and discussed
in details in Ref. [7]. A very important result of these investigations, which
has then been used many times in the literature on the dual models of con-
finement, is that the Wilson loop in this theory remains invariant under the
duality transformation.

In what follows, we shall just consider the grand canonical ensembles of
SU(2) and SU(3) Abelian-projected monopoles in 2+1 dimensions and string
representations of the Wilson loop in the respective disorder field theories. In
Section 2, we shall consider the simplest SU(2)-inspired case (i.e. compact
QED) and then, in Section 3, we will extend this analysis to the SU(3)-
inspired theory. The main results of our study will be summarized in the
conclusions.

2 String Representation of the Wilson Loop in Compact QED

The action of the Coulomb gas of monopoles in 3D compact QED has the
form

mon — quQaQb 1 Za,zb +SOan (1)
a<b
Here, A is the 3D Laplace operator, and Sy is the action of a single monopole,
So = const./e?. We have also adopted the standard Dirac notations, where
egm = 2mn, restricting ourselves to the monopoles of the minimal charge,
i.e. setting n = 1. Then, the partition function of the grand canonical ensem-
ble of monopoles corresponding to the action (1) reads

Zam =143 > .H/dﬁzz

N=1gqq=

2
Im
X exp {_87r /d?’xdgypgas(x) PgaS(Y) ) (2)

Ix -yl

where

pgas Z qa0 X - Za
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is the density of the monopole gas. Here, a single monopole weight ¢
exp (—Sp) has the dimension of (mass)®. It is usually referred to as the
fugacity. Notice also that we have restricted ourselves to the values g, = +1,
since monopoles with |¢| > 1 turn out to be unstable and tend to dissociate
into those with |¢| = 1. That is because the energy of a single monopole is
a quadratic function of its flux. Thus it is energetically more favourable for
the vacuum to support a configuration of two monopoles of the unit magnetic
charge than one monopole of the double charge.

Next, Coulomb interaction can be made local, albeit a nonlinear one, by
introducing an auxiliary scalar field:

Znen = [ Dxew {= [0 |5 (007 -2 eostani] ). @)

The magnetic mass m = ¢,nv/2¢ of the dual boson Y, following from the
quadratic term in the expansion of the cosine on the r.h.s. of Eq. (3), is due
to the Debye screening of this boson in the monopole gas.

Let us now cast the partition function (2) into the form of an integral over
monopole densities. This can be done by introducing into Eq. (2) a unity of
the form

1= /Dp5(p(><) — peas(x)) =/DpDAeXp{i [Z GaA(Za) —/d?’:ckp] }
. (@)

Then, performing the summation over the monopole ensemble in the same
way as it has been done in a derivation of the representation (3), we get

2
m 1
Zmon = /DpDAeXp{_g_w/dedSyp<X)|x_yp(Y)+

+ / d®z (2¢ cos A — i)\p)} . (5)

Finally, integrating over the Lagrange multiplier A by resolving the corre-
sponding saddle-point equation,

Sin)\:—%, (6)

we arrive at the following expression for the partition function

Zuon = [ Dpen{- [ [ @rup o) +vi0l]}. @
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Here,

Vip) = /d% p arcsinh (2_’2) —2¢y )1+ (2—92 (8)

is the effective multi-valued potential of monopole densities. Due to Eq. (4),
the obtained representation (7) is natural to be called as a representation for
the partition function in terms of the monopole densities.

We are now in the position to discuss the string representation of the
Wilson loop in 3D compact QED. Such a loop is nothing else, but an aver-
aged phase factor of an electrically charged test particle propagating along a
closed trajectory C. Since the Wilson loop depends only on this trajectory,
the desired string representation should be understood as some mechanism
providing the independence of the loop from a certain string world sheet %
bounded by C. By virtue of the Stokes theorem, the Wilson loop can be
rewritten in the following form

<W<c>>=<exp 5 [ o >
z Apyp

= WO, (o0 (5 [ Fbone)) -

Here, (W(C)) 4, stands for the standard free-photon contribution, whereas
the average over monopole densities is defined by the partition function (7).
We have also defined by F,,, = F,.[p] the full electromagnetic field strength
tensor F),, + Fﬁ , which includes the monopole part F% [p] obeying the mod-
ified Bianchi identities

1

§€pu)\auFI£\,/\I = 2’/Tp

Also, in Eq. (9),

) = 05 [ dou(y) =

x—y|
¥

stands for the solid angle under which the surface ¥ shows up to an observer
located at point x.

Equation (9) seems to contain some discrepancy, since its Lh.s. depends
only on the contour C, whereas the r.h.s. depends on an arbitrary surface
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>} bounded by C. However, this actually occurs to be not a discrepancy,
but a key point in the construction of the desired string representation. The
resolution of the apparent paradox lies in the observation that the surface
independence is realized by summing over all complex-valued branches of the
monopole potential (8) at every space point x.

It is worth noting that the so-obtained string representation (9) has been
derived for a first time in another, more indirect, way in Ref. [8]. It is therefore
instructive to establish a correspondence between our approach and the one
of that paper.

The main idea of Ref. [8] was to calculate the Wilson loop starting with
the direct definition of this average in the sense of the partition function (2)
of the monopole gas. The respective expression has the form

o N N 2
¥ (On =1+ 3> T 1T 200 2 [y

N=1gq,==%1

ngas(x)mpgas(}’) +§/d3xpgas(x)n(x)]

2 2
= /Dgoexp{/d?’:c lge? (8ng %@m) — 2Ccosg0] }, (10)

where ¢ = gmXx +1/2.
Next, one can prove the following equality

e? 1 e? 3 1 2
exp _gfdx”%dy”ﬂ_@/d x(@ugo—ia,ﬂo
C C

= /th exp [ /d?’m (igaswkaﬂhux + ggzhfw — 27rihm,2m,)} , (11)

which makes it possible to represent the contribution of the kinetic term on
the r.h.s. of Eq. (10) and the free-photon contribution to the Wilson loop
as an integral over the Kalb-Ramond field h,,. The only nontrivial point
necessary to prove the equality (11) is an expression for the derivative of the
solid angle [2]

1
(%\n(x) = E)\Hyaﬁfdyyﬂ — 47r/d0>\(y)5(x — y)
C b))

Making use of this result and carrying out the Gaussian integral over the field
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hy., one can demonstrate that both sides of Eq. (11) are equal to

e2 |1 3 5 1
exp 75 H d°z (aﬂgﬁ) + ; dauaﬂcp-i-
)

+ [ o) [ o1 -] b

P z

thus proving the validity of this equation.

Substituting now Eq. (11) into Eq. (10), it is straightforward to carry out
the integral over the field . Since this field has no more kinetic term, such an
integration can be performed in the saddle-point approximation. The respec-
tive saddle-point equation has the same form as Eq. (6) with the replacement
p — €uwrOuhux. As a result, we obtain the following expression for the full
Wilson loop

W(E)) = (W(O)) 4, W(C)) = [ D

"

X eXp { — /d% (gﬁlhiy +V [EuyAa#hyA]) + 2m’/dawhw , (12)
5

where the world-sheet independence of the r.h.s. is again provided by sum-
ming over branches of the multi-valued action, which is now the action of the
Kalb-Ramond field hy,,.

Comparing Egs. (9) and (12), we see that the Kalb-Ramond field is indeed
related to the monopole density via the equation €,,20,hvx = p. Thus, we
see that the same Legendre transformation which made out of pgas(x) the
dynamical field p(x) transforms the field F, [pgas] /(47) to the dynamical
Kalb-Ramond field h,, . In the formal language, such a decomposition of the
Kalb-Ramond field is just the essence of the Hodge decomposition theorem.

Let us now consider the case of a very dilute monopole gas |p| < ¢, and
restrict ourselves to the real branch of the effective potential. This yields the
following expression for the Wilson loop

(W (C)) gt s = / Dhy exp {_ / P {()%wa,\ + g3 h2, — 27rih,“,2w,} } ,

(13)
where H,,» = Ouhuxn + Ozhy + O hy, is the Kalb-Ramond field strength
tensor. Notice that the mass of the Kalb-Ramond field stemming from this
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equation is equal to the Debye mass m of the field x from Eq. (3).

Clearly as we now see by restricting ourselves to the real branch of the
potential we have violated the surface independence of the r.h.s. of Eq. (13).
This independence can be restored by replacing ¥ by the surface of the min-
imal area, Yin = Xmin[C]. After that, the quantity

Suer = — In (W(C)) (14)

dil- gas |, s
can be considered as a string effective action of 3D compact QED in the dilute
monopole gas approximation.

Integrating over the Kalb-Ramond field, we get (apart from the boundary

term)

¢ e—mlx—y|
=y [ don) [ don Tt

min Zmin

This non-local action can be further expanded in powers of the derivatives
with respect to the world-sheet coordinates ¢ = (¢1,£2), which is equivalent
to the 1/m-expansion. Then, as the first two non-trivial terms, we get the
Nambu-Goto and the Polyakov-Kleinert terms [9,10]:

1
Sstr O_/d2§\/§+ E /dzg\/ggab(aat#l/)(abt#l’)' (15)

Here, g% = (9%z,,)(0%z,,) is the induced metric tensor corresponding to the
world sheet X(C') parameterized by the vector z,(£), ¢ is the determinant of
this tensor, and ¢, = €%(9ax,)(0pzy)/\/7 is the extrinsic curvature tensor
corresponding to the same world sheet. The Polyakov-Kleinert term describes
the stiffness of the string and makes the obtained local string action much
more suitable for modelling the QCD string than the pure Nambu-Goto ac-
tion [11,12]. The string tension and the inverse coupling constant of the
Polyakov-Kleinert term read o = 72v/2(/gm and 1/a = —72/(8y/2(g3,), re-
spectively. Both of them are non-analytic in the electric coupling constant,
which manifests the non-perturbative nature of confinement in the model un-
der study. Notice also that the negative sign of « is important for providing
the stability of the string [10,12].
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3 String Representation of the Wilson Loop in the Gas of SU(3)
Abelian-Projected Monopoles

The partition function describing the grand canonical ensemble of SU(3)
Abelian-projected monopoles has the form [13]

s s T [ N oy
o +NZ:1 N! 1_[1 “a Z xp 47rz|za—zb\ '
= a= a<

Qq==41,12,43
(16)

Here, the magnetic coupling constant g,, is related to the QCD coupling
constant g according to the equation gg,, = 4w, ( x exp (fconst./g2) is
again the fugacity of a single monopole, and ¢, ’s are the nonzero weights of
the zero triality adjoint representation of *SU(3). These weights are defined
as @ = (1/2.V3/2), @ = (~1,0), @ = (1/2.—V3/2), d-a = —Ga Notice
that for every a = 1, +2, +£3 and A = (A3, As) [where in the Gell-Mann basis
A3 = diag (1,—1,0), A\g = diag (1/\/5, 1/V/3, 72/\/5)], the following relation
holds: (j’ax = n. Here, n is some traceless diagonal matrix with the elements
0, %1. This matrix can thus be written as # = wzw !, where w is any of the
six elements of the permutation group S3, which is the reason for the same
amount of vectors ¢4 ’s.
Equation (16) can be represented as

Zuon = [ Do {— [ E (V)2 -2 cos (gmqm] } .o

a=1

and we see that the property ¢_, = —, yields in this case the cosine in the
action rigorously. Let us now define the Wilson loop as

(W(C)) = % <trP exp éj{dx#lux > (18)

with /Yu = (Ai, Ai) and consider the monopole contribution to this quantity
in the theory (17). Then, it turns out that we have the following string
representation [14] [compare with Egs. (7)-(9)]:

3 2
1 g 1
3Zm0nazl/ peXp{ [%/ 2 yp) i)

(W(C)) mon =
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+3 Vi) — i / dgxﬁﬁan] } (19)

B=1

Here, we have introduced the vectors

() e ) )
= 252\/§ s T2 = 252\/5 s T3 = 3 \/g ;

which are just the weights of the representation 3 of *SU(3). These vectors
thus determine the charges of quarks of three colours with respect to the
diagonal gluons A,,. Besides that we have denoted

_ 1 1 1 2 _ 2 1 _ 1 1 1 2
pl—ﬁ(%p +P>7P2——§Paﬂ3—ﬁ(7§/) —P);
where p'? are the components of the monopole density, 7= (p', p?).

One can see that it is again the sum over branches of the multi-valued
monopole potential (8) which provides the surface independence of the r.h.s.
of Eq. (19). Besides that, we see that the string representation of the Wilson
loop in the SU(3) monopole gas differs from that of the SU(2)-case. This
disproves the conjecture put forward in Ref. [8], according to which the SU(2)-
inspired action should be universal for any gauge group SU(N). Finally,
it is straightforward to integrate over monopole densities in the dilute gas
approximation, which yields again the string effective action of the form (15).

4 Conclusions

In the present paper, we have derived the string representations of the Wil-
son loop in 2+1-dimensional gases of SU(2) and SU(3) Abelian-projected
monopoles. Contrary to photons, monopoles do not interact with the con-
tour of the Wilson loop, but rather with the string world sheet spanned by
this contour. Therefore in both cases, the resulting string representation was
understood as a certain mechanism providing the independence of the Wil-
son loop of the choice of such a world sheet. It has been demonstrated that
such a mechanism can be based on the summation over branches of a certain
multi-valued potential of monopole densities. Substituting for such densi-
ties the Kalb-Ramond field unambiguously related to them via the modified
Bianchi identities, one arrives in the SU(2)-inspired case at the theory of con-
fining strings, whereas in the SU(3)-inspired case one gets a different action.
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Although such a reformulation of the functional integral in terms of the Kalb-
Ramond field allows one to account automatically also for the non-compact
(photon) part of the gauge fields, it is physically less transparent than the
proposed representation in terms of the monopole densities.

In the approximation of a very dilute monopole gas, the real branch of
the monopole potential becomes a quadratic functional, and one can explicitly
integrate monopoles out. This produces the non-local string effective action,
whose gradient expansion yields the Nambu-Goto and the Polyakov-Kleinert
terms as the leading ones. Those make confinement in the models under
study manifest and ensure the stability of strings.

However, it remains unclear within the monopole-gas models how to derive
the monopole fugacity itself from the QCD Lagrangian. Some attempts in this
direction have been done in Ref. [15], but the explicit answer is unfortunately
not yet found. The still pending question is: What is the proportionality
coefficient between the string tension in QCD and AZQCD? Since the answer
to this question is very important for the understanding of the connection be-
tween the perturbative and non-perturbative phenomena in QCD, it requires
further investigations.
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