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We review the question of triviality of QED due to Landau and recall the arguments
of the Adler conjecture on the vanishing of the Callan-Symanzik function at the
physical fine structure constant, 3(a) = 0.

As a result of the screening of charged particles by their interactions with
virtual fermion-antifermion pairs in the vacuum state it is conceivable that
there exists no interacting continuum limit of QED in 4 dimensions, a prop-
erty called “triviality of the theory” by mathematical physicists. From the
Renormalization Group (RG) point of view, triviality is a reflection of the
absence of a nontrivial ultra-violet (UV) stable fixed-point in the Callan-
Symanzik beta function. It has been emphasized by Wilson [1] that a non-
trivial renormalizable theory can only be formulated, if the Callan-Symanzik
function exhibits UV stable fixed-points at a nonzero coupling strength: Only
such a fixed-point allows for a nontrivial continuum limit of the theory. This
was demonstrated in the classic 1954 paper of Gell-Mann and Low [2]. Lan-
dau and Pomeranchuk [3] argued that QED is expected to be a free theory in
this limit. Landau’s contention was recently substantiated by lattice calcu-
lations [4]. We are now pretty confident that, at infinite cutoff, perturbative
QED suffers from complete screening and would have a vanishing fine struc-
ture constant. This is somewhat ironic since perturbative renormalization
scores its greatest “triumph” in QED!

Nevertheless it is still conceivable that there does exist an UV stable
fixed-point, after all, as first argued in the premise in the classic papers of
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Adler [5], and Johnson and Baker [6], although subsequent investigation by
Adler, Callan, Gross, and Jackiw and by Baker and Johnson [7] inclined again
towards the absence of a UV fixed-point. This result was reemphasized by
the analysis of Acharya and Narayana Swamy [7].

An UV fixed-point would only be possible, if non-perturbative effects
changed the qualitative nature of the operator product expansion, or if there
were a non-perturbative renormalization of the triangle anomaly [8]. In this
note, we present once more an argument that the Callan-Symanzik beta func-
tion B3(a) does have a nontrivial zero in QED [9], implying a nontrivial con-
tinuum limit.

Since the vacuum expectation value of the vector current J* vanishes by
Lorentz invariance, the charge () must annihilate the vacuum state |0):

Q10) = 0. (1)
The conservation of the vector current j*
" (x,1) =0 (2)
implies the local commutator
[Q, H (x,1)] = 0. (3)

The only assumption is that the surface terms at spatial infinity can be dis-
carded. This is justified as long as there are no scalar Nambu-Goldstone
bosons which could produce a long-range interaction necessary for a non-
vanishing surface term at spatial infinity. In QED this is supposed to be the
case.

Massless QED is scale-invariant at the classical level. After quantization,
the divergence of the dilatation current D,, is determined by the trace anomaly

Bla)

Dy = = F, P, (4)

The dilatation charge
Qo = [ d%ba (x. )

satisfies the commutator relation

(@b, Q] = —idqQ (6)
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which defines the scale dimension of the charge ), whose canonical value is
dg = 0. We derive from Egs. (3) and (6), invoking the Jacobi identity, the
double commutator

[@p.[Q, H]] =0, (7)
and arrive at
[Q,0"D,] =0. (8)
The last step follows from
[H (x,1).Qp] = —i0, D" # 0 (9)

by virtue of the trace anomaly (4).
Applying (8) to the vacuum state, we obtain

[Q, 0" D] |0) = 0. (10)
Using Eq. (1), this implies
Qo*D,, |0) = 0. (11)

The divergence of the dilatation current is clearly a local operator. Moreover,

the charge @ is time-independent (since the vector current is conserved) and

has the following important properties:

(a) Tt is a constant operator,

(b) it is also a generator of pure phase rotations in the electron fields.
Therefore, the locality of 0D, remains undisturbed by the multiplication

with Q. We may thus invoke the Federbush-Johnson theorem [10] which

applies to any local operator to conclude that

Qo*D, =0. (12)
Since the charge Q must clearly be non-vanishing in QED, we obtain
o*D, = 0. (13)
Together with Eq. (4) this implies the result we wanted to prove:
B(a) = 0. (14)

This is the conclusion first drawn in the classic paper of Adler [5]. Tt re-
mains an interesting problem to calculate 3(«) non-perturbatively and verify
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whether that (14) is true or not, and to find out the possible source of error
in the previous simple line of arguments.
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